Relative quasimaps and mirror formulae

We construct and study the theory of relative quasimaps in genus zero, in the spirit of Gathmann. When $X$ is a smooth toric variety and $Y$ is a smooth very ample hypersurface in $X$, we produce a virtual class on the moduli space of relative quasimaps to $(X,Y)$, which we use to define relative qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Battistella, Luca (VerfasserIn) , Nabijou, Navid (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: International mathematics research notices
Year: 2021, Heft: 10, Pages: 7885-7931
ISSN:1687-0247
DOI:10.1093/imrn/rnz339
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imrn/rnz339
Volltext
Verfasserangaben:Luca Battistella, Navid Nabijou
Beschreibung
Zusammenfassung:We construct and study the theory of relative quasimaps in genus zero, in the spirit of Gathmann. When $X$ is a smooth toric variety and $Y$ is a smooth very ample hypersurface in $X$, we produce a virtual class on the moduli space of relative quasimaps to $(X,Y)$, which we use to define relative quasimap invariants. We obtain a recursion formula which expresses each relative invariant in terms of invariants of lower tangency, and apply this formula to derive a quantum Lefschetz theorem for quasimaps, expressing the restricted quasimap invariants of $Y$ in terms of those of $X$. Finally, we show that the relative $I$-function of Fan-Tseng-You coincides with a natural generating function for relative quasimap invariants, providing mirror-symmetric motivation for the theory.
Beschreibung:Gesehen am 04.09.2021
Advance access publication January 22, 2020
Beschreibung:Online Resource
ISSN:1687-0247
DOI:10.1093/imrn/rnz339