Relative quasimaps and mirror formulae
We construct and study the theory of relative quasimaps in genus zero, in the spirit of Gathmann. When $X$ is a smooth toric variety and $Y$ is a smooth very ample hypersurface in $X$, we produce a virtual class on the moduli space of relative quasimaps to $(X,Y)$, which we use to define relative qu...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2021
|
| In: |
International mathematics research notices
Year: 2021, Heft: 10, Pages: 7885-7931 |
| ISSN: | 1687-0247 |
| DOI: | 10.1093/imrn/rnz339 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imrn/rnz339 |
| Verfasserangaben: | Luca Battistella, Navid Nabijou |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1769435514 | ||
| 003 | DE-627 | ||
| 005 | 20220820041719.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210904s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1093/imrn/rnz339 |2 doi | |
| 035 | |a (DE-627)1769435514 | ||
| 035 | |a (DE-599)KXP1769435514 | ||
| 035 | |a (OCoLC)1341420985 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Battistella, Luca |e VerfasserIn |0 (DE-588)1222170957 |0 (DE-627)1741170281 |4 aut | |
| 245 | 1 | 0 | |a Relative quasimaps and mirror formulae |c Luca Battistella, Navid Nabijou |
| 264 | 1 | |c 2021 | |
| 300 | |a 47 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 04.09.2021 | ||
| 500 | |a Advance access publication January 22, 2020 | ||
| 520 | |a We construct and study the theory of relative quasimaps in genus zero, in the spirit of Gathmann. When $X$ is a smooth toric variety and $Y$ is a smooth very ample hypersurface in $X$, we produce a virtual class on the moduli space of relative quasimaps to $(X,Y)$, which we use to define relative quasimap invariants. We obtain a recursion formula which expresses each relative invariant in terms of invariants of lower tangency, and apply this formula to derive a quantum Lefschetz theorem for quasimaps, expressing the restricted quasimap invariants of $Y$ in terms of those of $X$. Finally, we show that the relative $I$-function of Fan-Tseng-You coincides with a natural generating function for relative quasimap invariants, providing mirror-symmetric motivation for the theory. | ||
| 700 | 1 | |a Nabijou, Navid |e VerfasserIn |0 (DE-588)1240555717 |0 (DE-627)1769435492 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t International mathematics research notices |d Oxford : Oxford University Press, 1991 |g (2021), 10, Seite 7885-7931 |h Online-Ressource |w (DE-627)265549639 |w (DE-600)1465368-0 |w (DE-576)254482201 |x 1687-0247 |7 nnas |a Relative quasimaps and mirror formulae |
| 773 | 1 | 8 | |g year:2021 |g number:10 |g pages:7885-7931 |g extent:47 |a Relative quasimaps and mirror formulae |
| 856 | 4 | 0 | |u https://doi.org/10.1093/imrn/rnz339 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210904 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1222170957 |a Battistella, Luca |m 1222170957:Battistella, Luca |d 700000 |d 728500 |e 700000PB1222170957 |e 728500PB1222170957 |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1769435514 |e 3974119124 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"name":{"displayForm":["Duke University"]},"id":{"eki":["265549639"],"zdb":["1465368-0"],"issn":["1687-0247"]},"origin":[{"publisherPlace":"Oxford ; Durham, NC ; New York, NY [u.a.]","dateIssuedKey":"1991","publisher":"Oxford University Press ; Duke Univ. Press ; Hindawi Publ. Corp.","dateIssuedDisp":"1991-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"International mathematics research notices","subtitle":"IMRN","title_sort":"International mathematics research notices"}],"recId":"265549639","language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"Duke University","role":"isb"}],"disp":"Relative quasimaps and mirror formulaeInternational mathematics research notices","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 29.01.2025"],"part":{"text":"(2021), 10, Seite 7885-7931","extent":"47","year":"2021","issue":"10","pages":"7885-7931"},"titleAlt":[{"title":"IMRN"}],"pubHistory":["1991 -"]}],"physDesc":[{"extent":"47 S."}],"name":{"displayForm":["Luca Battistella, Navid Nabijou"]},"id":{"doi":["10.1093/imrn/rnz339"],"eki":["1769435514"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"recId":"1769435514","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 04.09.2021","Advance access publication January 22, 2020"],"person":[{"display":"Battistella, Luca","roleDisplay":"VerfasserIn","role":"aut","family":"Battistella","given":"Luca"},{"roleDisplay":"VerfasserIn","display":"Nabijou, Navid","role":"aut","family":"Nabijou","given":"Navid"}],"title":[{"title_sort":"Relative quasimaps and mirror formulae","title":"Relative quasimaps and mirror formulae"}]} | ||
| SRT | |a BATTISTELLRELATIVEQU2021 | ||