Relative quasimaps and mirror formulae

We construct and study the theory of relative quasimaps in genus zero, in the spirit of Gathmann. When $X$ is a smooth toric variety and $Y$ is a smooth very ample hypersurface in $X$, we produce a virtual class on the moduli space of relative quasimaps to $(X,Y)$, which we use to define relative qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Battistella, Luca (VerfasserIn) , Nabijou, Navid (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: International mathematics research notices
Year: 2021, Heft: 10, Pages: 7885-7931
ISSN:1687-0247
DOI:10.1093/imrn/rnz339
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imrn/rnz339
Volltext
Verfasserangaben:Luca Battistella, Navid Nabijou

MARC

LEADER 00000caa a2200000 c 4500
001 1769435514
003 DE-627
005 20220820041719.0
007 cr uuu---uuuuu
008 210904s2021 xx |||||o 00| ||eng c
024 7 |a 10.1093/imrn/rnz339  |2 doi 
035 |a (DE-627)1769435514 
035 |a (DE-599)KXP1769435514 
035 |a (OCoLC)1341420985 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Battistella, Luca  |e VerfasserIn  |0 (DE-588)1222170957  |0 (DE-627)1741170281  |4 aut 
245 1 0 |a Relative quasimaps and mirror formulae  |c Luca Battistella, Navid Nabijou 
264 1 |c 2021 
300 |a 47 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.09.2021 
500 |a Advance access publication January 22, 2020 
520 |a We construct and study the theory of relative quasimaps in genus zero, in the spirit of Gathmann. When $X$ is a smooth toric variety and $Y$ is a smooth very ample hypersurface in $X$, we produce a virtual class on the moduli space of relative quasimaps to $(X,Y)$, which we use to define relative quasimap invariants. We obtain a recursion formula which expresses each relative invariant in terms of invariants of lower tangency, and apply this formula to derive a quantum Lefschetz theorem for quasimaps, expressing the restricted quasimap invariants of $Y$ in terms of those of $X$. Finally, we show that the relative $I$-function of Fan-Tseng-You coincides with a natural generating function for relative quasimap invariants, providing mirror-symmetric motivation for the theory. 
700 1 |a Nabijou, Navid  |e VerfasserIn  |0 (DE-588)1240555717  |0 (DE-627)1769435492  |4 aut 
773 0 8 |i Enthalten in  |t International mathematics research notices  |d Oxford : Oxford University Press, 1991  |g (2021), 10, Seite 7885-7931  |h Online-Ressource  |w (DE-627)265549639  |w (DE-600)1465368-0  |w (DE-576)254482201  |x 1687-0247  |7 nnas  |a Relative quasimaps and mirror formulae 
773 1 8 |g year:2021  |g number:10  |g pages:7885-7931  |g extent:47  |a Relative quasimaps and mirror formulae 
856 4 0 |u https://doi.org/10.1093/imrn/rnz339  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210904 
993 |a Article 
994 |a 2021 
998 |g 1222170957  |a Battistella, Luca  |m 1222170957:Battistella, Luca  |d 700000  |d 728500  |e 700000PB1222170957  |e 728500PB1222170957  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1769435514  |e 3974119124 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"name":{"displayForm":["Duke University"]},"id":{"eki":["265549639"],"zdb":["1465368-0"],"issn":["1687-0247"]},"origin":[{"publisherPlace":"Oxford ; Durham, NC ; New York, NY [u.a.]","dateIssuedKey":"1991","publisher":"Oxford University Press ; Duke Univ. Press ; Hindawi Publ. Corp.","dateIssuedDisp":"1991-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"International mathematics research notices","subtitle":"IMRN","title_sort":"International mathematics research notices"}],"recId":"265549639","language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"Duke University","role":"isb"}],"disp":"Relative quasimaps and mirror formulaeInternational mathematics research notices","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 29.01.2025"],"part":{"text":"(2021), 10, Seite 7885-7931","extent":"47","year":"2021","issue":"10","pages":"7885-7931"},"titleAlt":[{"title":"IMRN"}],"pubHistory":["1991 -"]}],"physDesc":[{"extent":"47 S."}],"name":{"displayForm":["Luca Battistella, Navid Nabijou"]},"id":{"doi":["10.1093/imrn/rnz339"],"eki":["1769435514"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"recId":"1769435514","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 04.09.2021","Advance access publication January 22, 2020"],"person":[{"display":"Battistella, Luca","roleDisplay":"VerfasserIn","role":"aut","family":"Battistella","given":"Luca"},{"roleDisplay":"VerfasserIn","display":"Nabijou, Navid","role":"aut","family":"Nabijou","given":"Navid"}],"title":[{"title_sort":"Relative quasimaps and mirror formulae","title":"Relative quasimaps and mirror formulae"}]} 
SRT |a BATTISTELLRELATIVEQU2021