Epigenetic modulation of radiation-induced diacylglycerol kinase alpha expression prevents pro-fibrotic fibroblast response

Radiotherapy, a common component in cancer treatment, can induce adverse effects including fibrosis in co-irradiated tissues. We previously showed that differential DNA methylation at an enhancer of diacylglycerol kinase alpha (DGKA) in normal dermal fibroblasts is associated with radiation-induced...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Chun-Shan (Author) , Toth, Reka (Author) , Bakr, Ali (Author) , Goyal, Ashish (Author) , Islam, Md Saiful (Author) , Breuer, Kersten (Author) , Mayakonda Thippeswamy, Anand (Author) , Lin, Yu-Yu (Author) , Stepper, Peter (Author) , Jurkowski, Tomasz P. (Author) , Veldwijk, Marlon Romano (Author) , Sperk, Elena (Author) , Herskind, Carsten (Author) , Lutsik, Pavlo (Author) , Weichenhan, Dieter (Author) , Plass, Christoph (Author) , Schmezer, Peter (Author) , Popanda, Odilia (Author)
Format: Article (Journal)
Language:English
Published: 18 May 2021
In: Cancers
Year: 2021, Volume: 13, Issue: 10, Pages: 1-26
ISSN:2072-6694
DOI:10.3390/cancers13102455
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/cancers13102455
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2072-6694/13/10/2455
Get full text
Author Notes:Chun-Shan Liu, Reka Toth, Ali Bakr, Ashish Goyal, Md Saiful Islam, Kersten Breuer, Anand Mayakonda, Yu-Yu Lin, Peter Stepper, Tomasz P. Jurkowski, Marlon R. Veldwijk, Elena Sperk, Carsten Herskind, Pavlo Lutsik, Dieter Weichenhan, Christoph Plass, Peter Schmezer and Odilia Popanda
Description
Summary:Radiotherapy, a common component in cancer treatment, can induce adverse effects including fibrosis in co-irradiated tissues. We previously showed that differential DNA methylation at an enhancer of diacylglycerol kinase alpha (DGKA) in normal dermal fibroblasts is associated with radiation-induced fibrosis. After irradiation, the transcription factor EGR1 is induced and binds to the hypomethylated enhancer, leading to increased DGKA and pro-fibrotic marker expression. We now modulated this DGKA induction by targeted epigenomic and genomic editing of the DGKA enhancer and administering epigenetic drugs. Targeted DNA demethylation of the DGKA enhancer in HEK293T cells resulted in enrichment of enhancer-related histone activation marks and radiation-induced DGKA expression. Mutations of the EGR1-binding motifs decreased radiation-induced DGKA expression in BJ fibroblasts and caused dysregulation of multiple fibrosis-related pathways. EZH2 inhibitors (GSK126, EPZ6438) did not change radiation-induced DGKA increase. Bromodomain inhibitors (CBP30, JQ1) suppressed radiation-induced DGKA and pro-fibrotic marker expression. Similar drug effects were observed in donor-derived fibroblasts with low DNA methylation. Overall, epigenomic manipulation of DGKA expression may offer novel options for a personalized treatment to prevent or attenuate radiotherapy-induced fibrosis.
Item Description:Gesehen am 29.09.2021
Physical Description:Online Resource
ISSN:2072-6694
DOI:10.3390/cancers13102455