A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations
ABSTRACT. Hydrodynamical simulations of galaxy formation and evolution attempt to fully model the physics that shapes galaxies. The agreement between the morpho
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2021
|
| In: |
Monthly notices of the Royal Astronomical Society
Year: 2021, Volume: 501, Issue: 3, Pages: 4359-4382 |
| ISSN: | 1365-2966 |
| DOI: | 10.1093/mnras/staa3864 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/mnras/staa3864 Verlag, lizenzpflichtig, Volltext: https://academic.oup.com/mnras/article/501/3/4359/6039332 |
| Author Notes: | Lorenzo Zanisi, Marc Huertas-Company, François Lanusse, Connor Bottrell, Annalisa Pillepich, Dylan Nelson, Vicente Rodriguez-Gomez, Francesco Shankar, Lars Hernquist, Avishai Dekel, Berta Margalef-Bentabol, Mark Vogelsberger and Joel Primack |
| Summary: | ABSTRACT. Hydrodynamical simulations of galaxy formation and evolution attempt to fully model the physics that shapes galaxies. The agreement between the morpho |
|---|---|
| Item Description: | Advance Access publication 2020 December 16 Gesehen am 05.11.2021 |
| Physical Description: | Online Resource |
| ISSN: | 1365-2966 |
| DOI: | 10.1093/mnras/staa3864 |