Normalized information distance and the oscillation hierarchy

We study the complexity of computing the normalized information distance. We introduce a hierarchy of limit-computable functions by considering the number of oscillations. This is a function version of the difference hierarchy for sets. We show that the normalized information distance is not in any...

Full description

Saved in:
Bibliographic Details
Main Authors: Ambos-Spies, Klaus (Author) , Merkle, Wolfgang (Author) , Terwijn, Sebastiaan A. (Author)
Format: Article (Journal)
Language:English
Published: 2022
In: Journal of computer and system sciences
Year: 2022, Volume: 124, Pages: 65-76
ISSN:1090-2724
DOI:10.1016/j.jcss.2021.08.006
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jcss.2021.08.006
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022000021000866
Get full text
Author Notes:Klaus Ambos-Spies, Wolfgang Merkle, Sebastiaan A. Terwijn
Description
Summary:We study the complexity of computing the normalized information distance. We introduce a hierarchy of limit-computable functions by considering the number of oscillations. This is a function version of the difference hierarchy for sets. We show that the normalized information distance is not in any level of this hierarchy, strengthening previous nonapproximability results. As an ingredient to the proof, we demonstrate a conditional undecidability result about the independence of pairs of random strings.
Item Description:Available online 24 September 2021
Gesehen am 19.11.2021
Physical Description:Online Resource
ISSN:1090-2724
DOI:10.1016/j.jcss.2021.08.006