Normalized information distance and the oscillation hierarchy

We study the complexity of computing the normalized information distance. We introduce a hierarchy of limit-computable functions by considering the number of oscillations. This is a function version of the difference hierarchy for sets. We show that the normalized information distance is not in any...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ambos-Spies, Klaus (VerfasserIn) , Merkle, Wolfgang (VerfasserIn) , Terwijn, Sebastiaan A. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2022
In: Journal of computer and system sciences
Year: 2022, Jahrgang: 124, Pages: 65-76
ISSN:1090-2724
DOI:10.1016/j.jcss.2021.08.006
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jcss.2021.08.006
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022000021000866
Volltext
Verfasserangaben:Klaus Ambos-Spies, Wolfgang Merkle, Sebastiaan A. Terwijn
Beschreibung
Zusammenfassung:We study the complexity of computing the normalized information distance. We introduce a hierarchy of limit-computable functions by considering the number of oscillations. This is a function version of the difference hierarchy for sets. We show that the normalized information distance is not in any level of this hierarchy, strengthening previous nonapproximability results. As an ingredient to the proof, we demonstrate a conditional undecidability result about the independence of pairs of random strings.
Beschreibung:Available online 24 September 2021
Gesehen am 19.11.2021
Beschreibung:Online Resource
ISSN:1090-2724
DOI:10.1016/j.jcss.2021.08.006