A flow perspective on nonlinear least-squares problems

Just as the damped Newton method for the numerical solution of nonlinear algebraic problems can be interpreted as a forward Euler timestepping on the Newton flow equations, the damped Gauß-Newton method for nonlinear least squares problems is equivalent to forward Euler timestepping on the correspon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bock, Hans Georg (VerfasserIn) , Gutekunst, Jürgen (VerfasserIn) , Potschka, Andreas (VerfasserIn) , Suárez Garcés, María Elena (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 03 October 2020
In: Vietnam journal of mathematics
Year: 2020, Jahrgang: 48, Heft: 4, Pages: 987-1003
ISSN:2305-2228
DOI:10.1007/s10013-020-00441-z
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s10013-020-00441-z
Volltext
Verfasserangaben:Hans Georg Bock, Jürgen Gutekunst, Andreas Potschka, María Elena Suaréz Garcés
Beschreibung
Zusammenfassung:Just as the damped Newton method for the numerical solution of nonlinear algebraic problems can be interpreted as a forward Euler timestepping on the Newton flow equations, the damped Gauß-Newton method for nonlinear least squares problems is equivalent to forward Euler timestepping on the corresponding Gauß-Newton flow equations. We highlight the advantages of the Gauß-Newton flow and the Gauß-Newton method from a statistical and a numerical perspective in comparison with the Newton method, steepest descent, and the Levenberg-Marquardt method, which are respectively equivalent to Newton flow forward Euler, gradient flow forward Euler, and gradient flow backward Euler. We finally show an unconditional descent property for a generalized Gauß-Newton flow, which is linked to Krylov-Gauß-Newton methods for large-scale nonlinear least squares problems. We provide numerical results for large-scale problems: An academic generalized Rosenbrock function and a real-world bundle adjustment problem from 3D reconstruction based on 2D images.
Beschreibung:Gesehen am 25.11.2021
Beschreibung:Online Resource
ISSN:2305-2228
DOI:10.1007/s10013-020-00441-z