A flow perspective on nonlinear least-squares problems
Just as the damped Newton method for the numerical solution of nonlinear algebraic problems can be interpreted as a forward Euler timestepping on the Newton flow equations, the damped Gauß-Newton method for nonlinear least squares problems is equivalent to forward Euler timestepping on the correspon...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
03 October 2020
|
| In: |
Vietnam journal of mathematics
Year: 2020, Jahrgang: 48, Heft: 4, Pages: 987-1003 |
| ISSN: | 2305-2228 |
| DOI: | 10.1007/s10013-020-00441-z |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s10013-020-00441-z |
| Verfasserangaben: | Hans Georg Bock, Jürgen Gutekunst, Andreas Potschka, María Elena Suaréz Garcés |
| Zusammenfassung: | Just as the damped Newton method for the numerical solution of nonlinear algebraic problems can be interpreted as a forward Euler timestepping on the Newton flow equations, the damped Gauß-Newton method for nonlinear least squares problems is equivalent to forward Euler timestepping on the corresponding Gauß-Newton flow equations. We highlight the advantages of the Gauß-Newton flow and the Gauß-Newton method from a statistical and a numerical perspective in comparison with the Newton method, steepest descent, and the Levenberg-Marquardt method, which are respectively equivalent to Newton flow forward Euler, gradient flow forward Euler, and gradient flow backward Euler. We finally show an unconditional descent property for a generalized Gauß-Newton flow, which is linked to Krylov-Gauß-Newton methods for large-scale nonlinear least squares problems. We provide numerical results for large-scale problems: An academic generalized Rosenbrock function and a real-world bundle adjustment problem from 3D reconstruction based on 2D images. |
|---|---|
| Beschreibung: | Gesehen am 25.11.2021 |
| Beschreibung: | Online Resource |
| ISSN: | 2305-2228 |
| DOI: | 10.1007/s10013-020-00441-z |