Robust Huber-LASSO for improved prediction of protein, metabolite and gene expression levels relying on individual genotype data

Least absolute shrinkage and selection operator (LASSO) regression is often applied to select the most promising set of single nucleotide polymorphisms (SNPs) associated with a molecular phenotype of interest. While the penalization parameter λ restricts the number of selected SNPs and the potential...

Full description

Saved in:
Bibliographic Details
Main Authors: Deutelmoser, Heike (Author) , Scherer, Dominique (Author) , Brenner, Hermann (Author) , Waldenberger, Melanie (Author) , Suhre, Karsten (Author) , Kastenmüller, Gabi (Author) , Lorenzo Bermejo, Justo (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: Briefings in bioinformatics
Year: 2021, Volume: 22, Issue: 4, Pages: 1-12
ISSN:1477-4054
DOI:10.1093/bib/bbaa230
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/bib/bbaa230
Get full text
Author Notes:Heike Deutelmoser, Dominique Scherer, Hermann Brenner, Melanie Waldenberger, INTERVAL study, Karsten Suhre, Gabi Kastenmüller and Justo Lorenzo Bermejo
Description
Summary:Least absolute shrinkage and selection operator (LASSO) regression is often applied to select the most promising set of single nucleotide polymorphisms (SNPs) associated with a molecular phenotype of interest. While the penalization parameter λ restricts the number of selected SNPs and the potential model overfitting, the least-squares loss function of standard LASSO regression translates into a strong dependence of statistical results on a small number of individuals with phenotypes or genotypes divergent from the majority of the study population—typically comprised of outliers and high-leverage observations.Robust methods have been developed to constrain the influence of divergent observations and generate statistical results that apply to the bulk of study data, but they have rarely been applied to genetic association studies. In this article, we review, for newcomers to the field of robust statistics, a novel version of standard LASSO that utilizes the Huber loss function. We conduct comprehensive simulations and analyze real protein, metabolite, mRNA expression and genotype data to compare the stability of penalization, the cross-iteration concordance of the model, the false-positive and true-positive rates and the prediction accuracy of standard and robust Huber-LASSO.Although the two methods showed controlled false-positive rates ≤2.1% and similar true-positive rates, robust Huber-LASSO outperformed standard LASSO in the accuracy of predicted protein, metabolite and gene expression levels using individual SNP data. The conducted simulations and real-data analyses show that robust Huber-LASSO represents a valuable alternative to standard LASSO in genetic studies of molecular phenotypes.
Item Description:Published: 16 October 2020
Gesehen am 13.12.2021
Physical Description:Online Resource
ISSN:1477-4054
DOI:10.1093/bib/bbaa230