High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling

In this work we present results of a detailed Bayesian parameter estimation for an analysis of ordinary differential equation models. These depend on many unknown parameters that have to be inferred from experimental data. The statistical inference in a high-dimensional parameter space is however co...

Full description

Saved in:
Bibliographic Details
Main Authors: Hug, Sabine (Author) , Raue, Andreas (Author) , Hasenauer, J. (Author) , Bachmann, J. (Author) , Klingmüller, Ursula (Author) , Timmer, J. (Author) , Theis, Fabian J. (Author)
Format: Article (Journal)
Language:English
Published: Dezember 2013
In: Mathematical biosciences
Year: 2013, Volume: 246, Issue: 2, Pages: 293-304
ISSN:1879-3134
DOI:10.1016/j.mbs.2013.04.002
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.mbs.2013.04.002
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0025556413000989
Get full text
Author Notes:S. Hug, A. Raue, J. Hasenauer, J. Bachmann, U. Klingmüller, J. Timmer, F. J. Theis
Description
Summary:In this work we present results of a detailed Bayesian parameter estimation for an analysis of ordinary differential equation models. These depend on many unknown parameters that have to be inferred from experimental data. The statistical inference in a high-dimensional parameter space is however conceptually and computationally challenging. To ensure rigorous assessment of model and prediction uncertainties we take advantage of both a profile posterior approach and Markov chain Monte Carlo sampling. We analyzed a dynamical model of the JAK2/STAT5 signal transduction pathway that contains more than one hundred parameters. Using the profile posterior we found that the corresponding posterior distribution is bimodal. To guarantee efficient mixing in the presence of multimodal posterior distributions we applied a multi-chain sampling approach. The Bayesian parameter estimation enables the assessment of prediction uncertainties and the design of additional experiments that enhance the explanatory power of the model. This study represents a proof of principle that detailed statistical analysis for quantitative dynamical modeling used in systems biology is feasible also in high-dimensional parameter spaces.
Item Description:Gesehen am 22.12.2021
Physical Description:Online Resource
ISSN:1879-3134
DOI:10.1016/j.mbs.2013.04.002