Spectroscopic studies on the thermodynamics of the complexation of trivalent curium with propionate in the temperature range from 20 to 90 °C

The thermodynamics of the stepwise complexation reaction of Cm(III) with propionate was studied by time resolved laser fluorescence spectroscopy (TRLFS) and UV/Vis absorption spectroscopy as a function of the ligand concentration, the ionic strength and temperature (20-90 °C). The molar fractions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Skerencak-Frech, Andrej (VerfasserIn) , Höhne, Stefanie (VerfasserIn) , Hofmann, Sascha (VerfasserIn) , Marquardt, Christian M. (VerfasserIn) , Panak, Petra (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2013
In: Journal of solution chemistry
Year: 2013, Jahrgang: 42, Pages: 1-17
ISSN:1572-8927
DOI:10.1007/s10953-012-9945-x
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10953-012-9945-x
Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007%2Fs10953-012-9945-x
Volltext
Verfasserangaben:Andrej Skerencak, Stefanie Höhne, Sascha Hofmann, Christian M. Marquardt, Petra J. Panak
Beschreibung
Zusammenfassung:The thermodynamics of the stepwise complexation reaction of Cm(III) with propionate was studied by time resolved laser fluorescence spectroscopy (TRLFS) and UV/Vis absorption spectroscopy as a function of the ligand concentration, the ionic strength and temperature (20-90 °C). The molar fractions of the 1:1 and 1:2 complexes were quantified by peak deconvolution of the emission spectra at each temperature, yielding the log10$$ K_{n}^{\prime } $$values. Using the specific ion interaction theory (SIT), the thermodynamic stability constants log10$$ K_{n}^{0} (T) $$were determined. The log10$$ K_{n}^{0} (T) $$values show a distinct increase by 0.15 (n = 1) and 1.0 (n = 2) orders of magnitude in the studied temperature range, respectively. The temperature dependency of the log10$$ K_{n}^{0} (T) $$values is well described by the integrated van’t Hoff equation, assuming a constant enthalpy of reaction and $$ \Updelta_{\text{r}} C^\circ_{{p,{\text{m}}}} = 0, $$yielding the thermodynamic standard state $$ \left( {\Updelta_{\text{r}} H^\circ_{\text{m}} ,\Updelta_{\text{r}} S^\circ_{\text{m}} ,\Updelta_{\text{r}} G^\circ_{\text{m}} } \right) $$values for the formation of the $$ {\text{Cm(Prop)}}_{n}^{3 - n} $$, n = (1, 2) species.
Beschreibung:Published: 12 January 2013
Gesehen am 03.02.2022
Beschreibung:Online Resource
ISSN:1572-8927
DOI:10.1007/s10953-012-9945-x