Critical point for demixing of binary hard spheres

We use a two-level simulation method to analyze the critical point associated with demixing of binary hard-sphere mixtures. The method exploits an accurate coarse-grained model with two- and three-body effective interactions. Using this model within the two-level methodology allows computation of pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kobayashi, Hideki (VerfasserIn) , Rohrbach, Paul B. (VerfasserIn) , Scheichl, Robert (VerfasserIn) , Wilding, Nigel B. (VerfasserIn) , Jack, Robert L. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 8 October 2021
In: Physical review
Year: 2021, Jahrgang: 104, Heft: 4, Pages: 1-12
ISSN:2470-0053
DOI:10.1103/PhysRevE.104.044603
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevE.104.044603
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevE.104.044603
Volltext
Verfasserangaben:Hideki Kobayashi, Paul B. Rohrbach, Robert Scheichl, Nigel B. Wilding, and Robert L. Jack
Beschreibung
Zusammenfassung:We use a two-level simulation method to analyze the critical point associated with demixing of binary hard-sphere mixtures. The method exploits an accurate coarse-grained model with two- and three-body effective interactions. Using this model within the two-level methodology allows computation of properties of the full (fine-grained) mixture. The critical point is located by computing the probability distribution for the number of large particles in the grand canonical ensemble and matching to the universal form for the 3D Ising universality class. The results have a strong and unexpected dependence on the size ratio between large and small particles, which is related to three-body effective interactions and the geometry of the underlying hard-sphere packings.
Beschreibung:Gesehen am 10.02.2022
Beschreibung:Online Resource
ISSN:2470-0053
DOI:10.1103/PhysRevE.104.044603