The sum of Lagrange numbers

Combining McShane’s identity on a hyperbolic punctured torus with well-known geometric interpretations of the Markov Uniqueness Conjecture (MUC), we find that MUC is equivalent to the identity ∑n=1∞(3−Ln)=4−φ−2, where Ln is the nth Lagrange number and φ=1+52 is the golden ratio.

Saved in:
Bibliographic Details
Main Authors: Gaster, Jonah (Author) , Loustau, Brice (Author)
Format: Article (Journal)
Language:English
Published: August 20, 2021
In: Proceedings of the American Mathematical Society
Year: 2021, Volume: 149, Issue: 12, Pages: 5385-5391
ISSN:1088-6826
DOI:10.1090/proc/15527
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/proc/15527
Verlag, lizenzpflichtig, Volltext: https://www.ams.org/proc/2021-149-12/S0002-9939-2021-15527-5/
Get full text
Author Notes:Jonah Gaster and Brice Loustau ; (communicated by David Futer)
Description
Summary:Combining McShane’s identity on a hyperbolic punctured torus with well-known geometric interpretations of the Markov Uniqueness Conjecture (MUC), we find that MUC is equivalent to the identity ∑n=1∞(3−Ln)=4−φ−2, where Ln is the nth Lagrange number and φ=1+52 is the golden ratio.
Item Description:Gesehen am 21.02.2022
Physical Description:Online Resource
ISSN:1088-6826
DOI:10.1090/proc/15527