The sum of Lagrange numbers
Combining McShane’s identity on a hyperbolic punctured torus with well-known geometric interpretations of the Markov Uniqueness Conjecture (MUC), we find that MUC is equivalent to the identity ∑n=1∞(3−Ln)=4−φ−2, where Ln is the nth Lagrange number and φ=1+52 is the golden ratio.
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
August 20, 2021
|
| In: |
Proceedings of the American Mathematical Society
Year: 2021, Jahrgang: 149, Heft: 12, Pages: 5385-5391 |
| ISSN: | 1088-6826 |
| DOI: | 10.1090/proc/15527 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/proc/15527 Verlag, lizenzpflichtig, Volltext: https://www.ams.org/proc/2021-149-12/S0002-9939-2021-15527-5/ |
| Verfasserangaben: | Jonah Gaster and Brice Loustau ; (communicated by David Futer) |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1793444560 | ||
| 003 | DE-627 | ||
| 005 | 20220820133309.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220221s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1090/proc/15527 |2 doi | |
| 035 | |a (DE-627)1793444560 | ||
| 035 | |a (DE-599)KXP1793444560 | ||
| 035 | |a (OCoLC)1341441782 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Gaster, Jonah |e VerfasserIn |0 (DE-588)1252289502 |0 (DE-627)1793444161 |4 aut | |
| 245 | 1 | 4 | |a The sum of Lagrange numbers |c Jonah Gaster and Brice Loustau ; (communicated by David Futer) |
| 264 | 1 | |c August 20, 2021 | |
| 300 | |a 7 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 21.02.2022 | ||
| 520 | |a Combining McShane’s identity on a hyperbolic punctured torus with well-known geometric interpretations of the Markov Uniqueness Conjecture (MUC), we find that MUC is equivalent to the identity ∑n=1∞(3−Ln)=4−φ−2, where Ln is the nth Lagrange number and φ=1+52 is the golden ratio. | ||
| 700 | 1 | |a Loustau, Brice |e VerfasserIn |0 (DE-588)1252289677 |0 (DE-627)1793444455 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a American Mathematical Society |t Proceedings of the American Mathematical Society |d Providence, RI : Soc., 1950 |g 149(2021), 12, Seite 5385-5391 |h Online-Ressource |w (DE-627)270129839 |w (DE-600)1476739-9 |w (DE-576)079876188 |x 1088-6826 |7 nnas |
| 773 | 1 | 8 | |g volume:149 |g year:2021 |g number:12 |g pages:5385-5391 |g extent:7 |a The sum of Lagrange numbers |
| 856 | 4 | 0 | |u https://doi.org/10.1090/proc/15527 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.ams.org/proc/2021-149-12/S0002-9939-2021-15527-5/ |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220221 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1252289677 |a Loustau, Brice |m 1252289677:Loustau, Brice |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PL1252289677 |e 110100PL1252289677 |e 110000PL1252289677 |e 110400PL1252289677 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 2 |y j | ||
| 999 | |a KXP-PPN1793444560 |e 4070858504 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"7 S."}],"relHost":[{"id":{"issn":["1088-6826"],"zdb":["1476739-9"],"eki":["270129839"]},"origin":[{"publisherPlace":"Providence, RI","dateIssuedDisp":"1950-","publisher":"Soc.","dateIssuedKey":"1950"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Proceedings of the American Mathematical Society","title_sort":"Proceedings of the American Mathematical Society"}],"recId":"270129839","corporate":[{"roleDisplay":"VerfasserIn","display":"American Mathematical Society","role":"aut"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 09.07.24"],"disp":"American Mathematical SocietyProceedings of the American Mathematical Society","part":{"extent":"7","text":"149(2021), 12, Seite 5385-5391","volume":"149","pages":"5385-5391","issue":"12","year":"2021"},"pubHistory":["1.1950 -"]}],"name":{"displayForm":["Jonah Gaster and Brice Loustau ; (communicated by David Futer)"]},"origin":[{"dateIssuedDisp":"August 20, 2021","dateIssuedKey":"2021"}],"id":{"eki":["1793444560"],"doi":["10.1090/proc/15527"]},"note":["Gesehen am 21.02.2022"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1793444560","language":["eng"],"person":[{"given":"Jonah","family":"Gaster","role":"aut","display":"Gaster, Jonah","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","display":"Loustau, Brice","role":"aut","family":"Loustau","given":"Brice"}],"title":[{"title":"The sum of Lagrange numbers","title_sort":"sum of Lagrange numbers"}]} | ||
| SRT | |a GASTERJONASUMOFLAGRA2020 | ||