On single measurement stability for the fractional Calderón problem

In this short article we complement the known single measurement uniqueness result for the fractional Calderón problem by a single measurement logarithmic stability estimate. To this end, we combine quantitative propagation of smallness results for the Caffarelli--Silvestre extension and a boundary...

Full description

Saved in:
Bibliographic Details
Main Author: Rüland, Angkana (Author)
Format: Article (Journal)
Language:English
Published: September 14, 2021
In: SIAM journal on mathematical analysis
Year: 2021, Volume: 53, Issue: 5, Pages: 5094-5113
ISSN:1095-7154
DOI:10.1137/20M1381964
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/20M1381964
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/20M1381964
Get full text
Author Notes:Angkana Rüland
Description
Summary:In this short article we complement the known single measurement uniqueness result for the fractional Calderón problem by a single measurement logarithmic stability estimate. To this end, we combine quantitative propagation of smallness results for the Caffarelli--Silvestre extension and a boundary doubling estimate. The latter yields control of the order of vanishing of solutions to the fractional Schrödinger equation and provides the central step in passing from the quantitative unique continuation for solutions to the logarithmic stability of the potential $q$.
Item Description:Gesehen am 23.02.2022
Physical Description:Online Resource
ISSN:1095-7154
DOI:10.1137/20M1381964