Local asymptotic stability of a system of integro-differential equations describing clonal evolution of a self-renewing cell population under mutation
In this paper we consider a system of non-linear integro-differential equations (IDEs) describing evolution of a clonally heterogeneous population of malignant white blood cells (leukemic cells) undergoing mutation and clonal selection. We prove existence and uniqueness of non-trivial steady states...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
06 January 2022
|
| In: |
Journal of mathematical biology
Year: 2022, Volume: 84, Pages: 1-36 |
| ISSN: | 1432-1416 |
| DOI: | 10.1007/s00285-021-01708-w |
| Online Access: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00285-021-01708-w |
| Author Notes: | Jan-Erik Busse, Sílvia Cuadrado, Anna Marciniak-Czochra |
| Summary: | In this paper we consider a system of non-linear integro-differential equations (IDEs) describing evolution of a clonally heterogeneous population of malignant white blood cells (leukemic cells) undergoing mutation and clonal selection. We prove existence and uniqueness of non-trivial steady states and study their asymptotic stability. The results are compared to those of the system without mutation. Existence of equilibria is proved by formulating the steady state problem as an eigenvalue problem and applying a version of the Krein-Rutmann theorem for Banach lattices. The stability at equilibrium is analysed using linearisation and the Weinstein-Aronszajn determinant which allows to conclude local asymptotic stability. |
|---|---|
| Item Description: | Gesehen am 04.03.2022 |
| Physical Description: | Online Resource |
| ISSN: | 1432-1416 |
| DOI: | 10.1007/s00285-021-01708-w |