Cotranslational N-degron masking by acetylation promotes proteome stability in plants

N-terminal protein acetylation (NTA) is a prevalent protein modification essential for viability in animals and plants. The dominant executor of NTA is the ribosome tethered Nα-acetyltransferase A (NatA) complex. However, the impact of NatA on protein fate is still enigmatic. Here, we demonstrate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Linster, Eric (VerfasserIn) , Forero Ruiz, Francy Liliana (VerfasserIn) , Miklánková, Pavlína (VerfasserIn) , Ruppert, Thomas (VerfasserIn) , Mueller, Johannes (VerfasserIn) , Armbruster, Laura (VerfasserIn) , Gong, Xiaodi (VerfasserIn) , Serino, Giovanna (VerfasserIn) , Mann, Matthias (VerfasserIn) , Hell, Rüdiger (VerfasserIn) , Wirtz, Markus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 February 2022
In: Nature Communications
Year: 2022, Jahrgang: 13, Pages: 1-12
ISSN:2041-1723
DOI:10.1038/s41467-022-28414-5
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41467-022-28414-5
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41467-022-28414-5
Volltext
Verfasserangaben:Eric Linster, Francy L. Forero Ruiz, Pavlina Miklankova, Thomas Ruppert, Johannes Mueller, Laura Armbruster, Xiaodi Gong, Giovanna Serino, Matthias Mann, Rüdiger Hell & Markus Wirtz
Beschreibung
Zusammenfassung:N-terminal protein acetylation (NTA) is a prevalent protein modification essential for viability in animals and plants. The dominant executor of NTA is the ribosome tethered Nα-acetyltransferase A (NatA) complex. However, the impact of NatA on protein fate is still enigmatic. Here, we demonstrate that depletion of NatA activity leads to a 4-fold increase in global protein turnover via the ubiquitin-proteasome system in Arabidopsis. Surprisingly, a concomitant increase in translation, actioned via enhanced Target-of-Rapamycin activity, is also observed, implying that defective NTA triggers feedback mechanisms to maintain steady-state protein abundance. Quantitative analysis of the proteome, the translatome, and the ubiquitome reveals that NatA substrates account for the bulk of this enhanced turnover. A targeted analysis of NatA substrate stability uncovers that NTA absence triggers protein destabilization via a previously undescribed and widely conserved nonAc/N-degron in plants. Hence, the imprinting of the proteome with acetylation marks is essential for coordinating proteome stability.
Beschreibung:Gesehen am 30.03.2022
Beschreibung:Online Resource
ISSN:2041-1723
DOI:10.1038/s41467-022-28414-5