Experimental verification of a 4D MLEM reconstruction algorithm used for in-beam PET measurements in particle therapy
In-beam positron emission tomography (PET) has been proven to be a reliable technique in ion beam radiotherapy for the in situ and non-invasive evaluation of the correct dose deposition in static tumour entities. In the presence of intra-fractional target motion an appropriate time-resolved (four-di...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2013
|
| In: |
Physics in medicine and biology
Year: 2013, Volume: 58, Issue: 15, Pages: 5085-5111 |
| ISSN: | 1361-6560 |
| DOI: | 10.1088/0031-9155/58/15/5085 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/0031-9155/58/15/5085 Verlag, lizenzpflichtig, Volltext: https://iopscience.iop.org/article/10.1088/0031-9155/58/15/5085 |
| Author Notes: | K. Stützer, C. Bert, W. Enghardt, S. Helmbrecht, K. Parodi, M. Priegnitz, N. Saito and F. Fiedler |
| Summary: | In-beam positron emission tomography (PET) has been proven to be a reliable technique in ion beam radiotherapy for the in situ and non-invasive evaluation of the correct dose deposition in static tumour entities. In the presence of intra-fractional target motion an appropriate time-resolved (four-dimensional, 4D) reconstruction algorithm has to be used to avoid reconstructed activity distributions suffering from motion-related blurring artefacts and to allow for a dedicated dose monitoring. Four-dimensional reconstruction algorithms from diagnostic PET imaging that can properly handle the typically low counting statistics of in-beam PET data have been adapted and optimized for the characteristics of the double-head PET scanner BASTEI installed at GSI Helmholtzzentrum Darmstadt, Germany (GSI). Systematic investigations with moving radioactive sources demonstrate the more effective reduction of motion artefacts by applying a 4D maximum likelihood expectation maximization (MLEM) algorithm instead of the retrospective co-registration of phasewise reconstructed quasi-static activity distributions. Further 4D MLEM results are presented from in-beam PET measurements of irradiated moving phantoms which verify the accessibility of relevant parameters for the dose monitoring of intra-fractionally moving targets. From in-beam PET listmode data sets acquired together with a motion surrogate signal, valuable images can be generated by the 4D MLEM reconstruction for different motion patterns and motion-compensated beam delivery techniques. |
|---|---|
| Item Description: | Gesehen am 18.03.2022 |
| Physical Description: | Online Resource |
| ISSN: | 1361-6560 |
| DOI: | 10.1088/0031-9155/58/15/5085 |