An ex vivo system to study cellular dynamics underlying mouse peri-implantation development

Upon implantation, mammalian embryos undergo major morphogenesis and key developmental processes such as body axis specification and gastrulation. However, limited accessibility obscures the study of these crucial processes. Here, we develop an ex vivo Matrigel-collagen-based culture to recapitulate...

Full description

Saved in:
Bibliographic Details
Main Authors: Ichikawa, Takafumi (Author) , Zhang, Hui Ting (Author) , Panavaite, Laura (Author) , Erzberger, Anna (Author) , Fabrèges, Dimitri (Author) , Snajder, Rene (Author) , Wolny, Adrian (Author) , Korotkevich, Ekaterina (Author) , Tsuchida-Straeten, Nobuko (Author) , Hufnagel, Lars (Author) , Kreshuk, Anna (Author) , Hiiragi, Takashi (Author)
Format: Article (Journal)
Language:English
Published: January 20, 2022
In: Developmental cell
Year: 2022, Volume: 57, Issue: 3
ISSN:1878-1551
DOI:10.1016/j.devcel.2021.12.023
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.devcel.2021.12.023
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1534580721010431
Get full text
Author Notes:Takafumi Ichikawa, Hui Ting Zhang, Laura Panavaite, Anna Erzberger, Dimitri Fabrèges, Rene Snajder, Adrian Wolny, Ekaterina Korotkevich, Nobuko Tsuchida-Straeten, Lars Hufnagel, Anna Kreshuk, and Takashi Hiiragi
Description
Summary:Upon implantation, mammalian embryos undergo major morphogenesis and key developmental processes such as body axis specification and gastrulation. However, limited accessibility obscures the study of these crucial processes. Here, we develop an ex vivo Matrigel-collagen-based culture to recapitulate mouse development from E4.5 to E6.0. Our system not only recapitulates embryonic growth, axis initiation, and overall 3D architecture in 49% of the cases, but its compatibility with light-sheet microscopy also enables the study of cellular dynamics through automatic cell segmentation. We find that, upon implantation, release of the increasing tension in the polar trophectoderm is necessary for its constriction and invagination. The resulting extra-embryonic ectoderm plays a key role in growth, morphogenesis, and patterning of the neighboring epiblast, which subsequently gives rise to all embryonic tissues. This 3D ex vivo system thus offers unprecedented access to peri-implantation development for in toto monitoring, measurement, and spatiotemporally controlled perturbation, revealing a mechano-chemical interplay between extra-embryonic and embryonic tissues.
Item Description:Gesehen am 22.03.2022
Physical Description:Online Resource
ISSN:1878-1551
DOI:10.1016/j.devcel.2021.12.023