Cartier modules: finiteness results

On a locally Noetherian scheme X over a field of positive characteristic p , we study the category of coherent X -modules M equipped with a p e -linear map, i.e. an additive map C : X X satisfying rC ( m ) C ( r p e m ) for all m M , r X . The notion of nilpotence, meaning that some power of the map...

Full description

Saved in:
Bibliographic Details
Main Authors: Blickle, Manuel (Author) , Böckle, Gebhard (Author)
Format: Article (Journal)
Language:English
Published: 1. Dezember 2011
In: Journal für die reine und angewandte Mathematik
Year: 2011, Issue: 661, Pages: 85-123
ISSN:1435-5345
DOI:10.1515/CRELLE.2011.087
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/CRELLE.2011.087
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2011.087/html
Get full text
Author Notes:by Manuel Blickle at Mainz and Gebhard Böckle at Heidelberg
Description
Summary:On a locally Noetherian scheme X over a field of positive characteristic p , we study the category of coherent X -modules M equipped with a p e -linear map, i.e. an additive map C : X X satisfying rC ( m ) C ( r p e m ) for all m M , r X . The notion of nilpotence, meaning that some power of the map C is zero, is used to rigidify this category. The resulting quotient category, called Cartier crystals, satisfies some strong finiteness conditions. The main result in this paper states that, if the Frobenius morphism on X is a finite map, i.e. if X is F -finite, then all Cartier crystals have finite length. We further show how this and related results can be used to recover and generalize other finiteness results of HartshorneSpeiser Ann. Math. 105: 4579, 1977, Lyubeznik J. reine angew. Math. 491: 65130, 1997, Sharp Trans. Amer. Math. Soc. 359: 42374258, 2007, EnescuHochster Alg. Num. Th. 2: 721754, 2008, and Hochster Contemp. Math. 448: 119127, 2007 about the structure of modules with a left action of the Frobenius. For example, we show that over any regular F -finite scheme X Lyubeznik's F -finite modules J. reine angew. Math. 491: 65130, 1997 have finite length.
Item Description:Gesehen am 30.03.2022
Physical Description:Online Resource
ISSN:1435-5345
DOI:10.1515/CRELLE.2011.087