Cartier modules: finiteness results

On a locally Noetherian scheme X over a field of positive characteristic p , we study the category of coherent X -modules M equipped with a p e -linear map, i.e. an additive map C : X X satisfying rC ( m ) C ( r p e m ) for all m M , r X . The notion of nilpotence, meaning that some power of the map...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Blickle, Manuel (VerfasserIn) , Böckle, Gebhard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1. Dezember 2011
In: Journal für die reine und angewandte Mathematik
Year: 2011, Heft: 661, Pages: 85-123
ISSN:1435-5345
DOI:10.1515/CRELLE.2011.087
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/CRELLE.2011.087
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2011.087/html
Volltext
Verfasserangaben:by Manuel Blickle at Mainz and Gebhard Böckle at Heidelberg

MARC

LEADER 00000caa a2200000 c 4500
001 179704480X
003 DE-627
005 20250530002959.0
007 cr uuu---uuuuu
008 220330s2011 xx |||||o 00| ||eng c
024 7 |a 10.1515/CRELLE.2011.087  |2 doi 
035 |a (DE-627)179704480X 
035 |a (DE-599)KXP179704480X 
035 |a (OCoLC)1341458257 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Blickle, Manuel  |e VerfasserIn  |0 (DE-588)1247778541  |0 (DE-627)1782389679  |4 aut 
245 1 0 |a Cartier modules  |b finiteness results  |c by Manuel Blickle at Mainz and Gebhard Böckle at Heidelberg 
264 1 |c 1. Dezember 2011 
300 |a 39 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.03.2022 
520 |a On a locally Noetherian scheme X over a field of positive characteristic p , we study the category of coherent X -modules M equipped with a p e -linear map, i.e. an additive map C : X X satisfying rC ( m ) C ( r p e m ) for all m M , r X . The notion of nilpotence, meaning that some power of the map C is zero, is used to rigidify this category. The resulting quotient category, called Cartier crystals, satisfies some strong finiteness conditions. The main result in this paper states that, if the Frobenius morphism on X is a finite map, i.e. if X is F -finite, then all Cartier crystals have finite length. We further show how this and related results can be used to recover and generalize other finiteness results of HartshorneSpeiser Ann. Math. 105: 4579, 1977, Lyubeznik J. reine angew. Math. 491: 65130, 1997, Sharp Trans. Amer. Math. Soc. 359: 42374258, 2007, EnescuHochster Alg. Num. Th. 2: 721754, 2008, and Hochster Contemp. Math. 448: 119127, 2007 about the structure of modules with a left action of the Frobenius. For example, we show that over any regular F -finite scheme X Lyubeznik's F -finite modules J. reine angew. Math. 491: 65130, 1997 have finite length. 
700 1 |a Böckle, Gebhard  |d 1964-  |e VerfasserIn  |0 (DE-588)1052651798  |0 (DE-627)788915908  |0 (DE-576)408431660  |4 aut 
773 0 8 |i Enthalten in  |t Journal für die reine und angewandte Mathematik  |d Berlin : de Gruyter, 1826  |g (2011), 661, Seite 85-123  |h Online-Ressource  |w (DE-627)266887171  |w (DE-600)1468592-9  |w (DE-576)07987598X  |x 1435-5345  |7 nnas  |a Cartier modules finiteness results 
773 1 8 |g year:2011  |g number:661  |g pages:85-123  |g extent:39  |a Cartier modules finiteness results 
856 4 0 |u https://doi.org/10.1515/CRELLE.2011.087  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2011.087/html  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220330 
993 |a Article 
994 |a 2011 
998 |g 1052651798  |a Böckle, Gebhard  |m 1052651798:Böckle, Gebhard  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PB1052651798  |e 110100PB1052651798  |e 110000PB1052651798  |e 110400PB1052651798  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
999 |a KXP-PPN179704480X  |e 4106966662 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","display":"Blickle, Manuel","roleDisplay":"VerfasserIn","given":"Manuel","family":"Blickle"},{"roleDisplay":"VerfasserIn","role":"aut","display":"Böckle, Gebhard","family":"Böckle","given":"Gebhard"}],"name":{"displayForm":["by Manuel Blickle at Mainz and Gebhard Böckle at Heidelberg"]},"physDesc":[{"extent":"39 S."}],"note":["Gesehen am 30.03.2022"],"id":{"eki":["179704480X"],"doi":["10.1515/CRELLE.2011.087"]},"recId":"179704480X","type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"title":[{"title":"Cartier modules","title_sort":"Cartier modules","subtitle":"finiteness results"}],"origin":[{"dateIssuedDisp":"1. Dezember 2011","dateIssuedKey":"2011"}],"relHost":[{"pubHistory":["1.1826 -"],"note":["Gesehen am 06.09.2018"],"physDesc":[{"extent":"Online-Ressource"}],"recId":"266887171","id":{"doi":["10.1515/crll"],"eki":["266887171"],"zdb":["1468592-9"],"issn":["1435-5345"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"publisher":"de Gruyter","publisherPlace":"Berlin","dateIssuedKey":"1826","dateIssuedDisp":"1826-"}],"title":[{"subtitle":"the world's oldest mathematical periodical","title_sort":"Journal für die reine und angewandte Mathematik","title":"Journal für die reine und angewandte Mathematik"}],"titleAlt":[{"title":"Crelle's journal"},{"title":"Crelles journal"}],"language":["ger","eng","fre"],"part":{"issue":"661","year":"2011","extent":"39","pages":"85-123","text":"(2011), 661, Seite 85-123"},"disp":"Cartier modules finiteness resultsJournal für die reine und angewandte Mathematik"}]} 
SRT |a BLICKLEMANCARTIERMOD1201