Three-dimensional O(N)-invariant ϕ4 models at criticality for N≥4
We study the O(N)-invariant ϕ4 model on the simple cubic lattice by using Monte Carlo simulations. By using a finite-size scaling analysis, we obtain accurate estimates for the critical exponents ν and η for N=4, 5, 6, 8, 10, and 12. We study the model for each N for at least three different values...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
24 February 2022
|
| In: |
Physical review
Year: 2022, Volume: 105, Issue: 5, Pages: 1-16 |
| ISSN: | 2469-9969 |
| DOI: | 10.1103/PhysRevB.105.054428 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.105.054428 Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.105.054428 |
| Author Notes: | Martin Hasenbusch |
| Summary: | We study the O(N)-invariant ϕ4 model on the simple cubic lattice by using Monte Carlo simulations. By using a finite-size scaling analysis, we obtain accurate estimates for the critical exponents ν and η for N=4, 5, 6, 8, 10, and 12. We study the model for each N for at least three different values of the parameter λ to control leading corrections to scaling. We compare our results with those obtained by other theoretical methods. |
|---|---|
| Item Description: | Gesehen am 07.04.2022 Im Titel ist die Zahl 4 nach phi hochgestellt |
| Physical Description: | Online Resource |
| ISSN: | 2469-9969 |
| DOI: | 10.1103/PhysRevB.105.054428 |