A tale of two DIGs: the relative role of H II regions and low-mass hot evolved stars in powering the diffuse ionised gas (DIG) in PHANGS-MUSE galaxies

We use integral field spectroscopy from the PHANGS-MUSE survey, which resolves the ionised interstellar medium structure at ∼50 pc resolution in 19 nearby spiral galaxies, to study the origin of the diffuse ionised gas (DIG). We examine the physical conditions of the diffuse gas by first removing mo...

Full description

Saved in:
Bibliographic Details
Main Authors: Belfiore, Francesco (Author) , Santoro, Francesco (Author) , Groves, B. (Author) , Schinnerer, Eva (Author) , Kreckel, Kathryn (Author) , Glover, Simon (Author) , Klessen, Ralf S. (Author) , Emsellem, E. (Author) , Blanc, G. A. (Author) , Congiu, E. (Author) , Barnes, A. T. (Author) , Boquien, M. (Author) , Chevance, Mélanie (Author) , Dale, D. A. (Author) , Kruijssen, Diederik (Author) , Leroy, A. K. (Author) , Pan, Hsi-An (Author) , Pessa, Ismael (Author) , Schruba, A. (Author) , Williams, Thomas G. (Author)
Format: Article (Journal)
Language:English
Published: 01 March 2022
In: Astronomy and astrophysics
Year: 2022, Volume: 659, Pages: 1-30
ISSN:1432-0746
DOI:10.1051/0004-6361/202141859
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1051/0004-6361/202141859
Verlag, lizenzpflichtig, Volltext: https://www.aanda.org/articles/aa/abs/2022/03/aa41859-21/aa41859-21.html
Get full text
Author Notes:F. Belfiore, F. Santoro, B. Groves, E. Schinnerer, K. Kreckel, S.C.O. Glover, R.S. Klessen, E. Emsellem, G.A. Blanc, E. Congiu, A.T. Barnes, M. Boquien, M. Chevance, D.A. Dale, J.M. Diederik Kruijssen, A.K. Leroy, H.-A. Pan, I. Pessa, A. Schruba, and T.G. Williams
Description
Summary:We use integral field spectroscopy from the PHANGS-MUSE survey, which resolves the ionised interstellar medium structure at ∼50 pc resolution in 19 nearby spiral galaxies, to study the origin of the diffuse ionised gas (DIG). We examine the physical conditions of the diffuse gas by first removing morphologically defined H II regions and then binning the low-surface-brightness areas to achieve significant detections of the key nebular lines in the DIG. A simple model for the leakage and propagation of ionising radiation from H II regions is able to reproduce the observed distribution of H<i>α<i/> in the DIG. This model infers a typical mean free path for the ionising radiation of 1.9 kpc for photons propagating within the disc plane. Leaking radiation from H II regions also explains the observed decrease in line ratios of low-ionisation species ([S II]/H<i>α<i/>, [N II]/H<i>α<i/>, and [O I]/H<i>α<i/>) with increasing H<i>α<i/> surface brightness (Σ<sub>H<i>α<i/><sub/>). Emission from hot low-mass evolved stars, however, is required to explain: (1) the enhanced low-ionisation line ratios observed in the central regions of some of the galaxies in our sample; (2) the observed trends of a flat or decreasing [O III]/H<i>β<i/> with Σ<sub>H<i>α<i/><sub/>; and (3) the offset of some DIG regions from the typical locus of H II regions in the Baldwin-Phillips-Terlevich (BPT) diagram, extending into the area of low-ionisation (nuclear) emission-line regions (LI[N]ERs). Hot low-mass evolved stars make a small contribution to the energy budget of the DIG (2% of the galaxy-integrated H<i>α<i/> emission), but their harder spectra make them fundamental contributors to [O III] emission. The DIG might result from a superposition of two components, an energetically dominant contribution from young stars and a more diffuse background of harder ionising photons from old stars. This unified framework bridges observations of the Milky Way DIG with LI(N)ER-like emission observed in nearby galaxy bulges.
Item Description:Gesehen am 20.04.2022
Physical Description:Online Resource
ISSN:1432-0746
DOI:10.1051/0004-6361/202141859