Forecast revisions in the presence of news: a lab investigation

We conduct a laboratory experiment in a fully-fledged macroeconomic model where participants receive information about future government spending shocks and are tasked with repeatedly forecasting output over a given horizon. By eliciting several-period-head predictions, we investigate forecast react...

Full description

Saved in:
Bibliographic Details
Main Authors: Lustenhouwer, Joep (Author) , Salle, Isabelle (Author)
Format: Book/Monograph Working Paper
Language:English
Published: Heidelberg Universitätsbibliothek Heidelberg 11 Mai 2022
Series:AWI discussion paper series no. 714 (April 2022)
In: AWI discussion paper series (no. 714 (April 2022))

DOI:10.11588/heidok.00031616
Subjects:
Online Access:Resolving-System, kostenfrei: https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-316163
Resolving-System, kostenfrei: http://dx.doi.org/10.11588/heidok.00031616
Verlag, kostenfrei, Volltext: http://www.ub.uni-heidelberg.de/archiv/31616
Verlag, kostenfrei: http://archiv.ub.uni-heidelberg.de/volltextserver/31616/13/Lustenhouwer_Salle_2022_dp_714.pdf
Resolving-System: https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-316163
Langzeitarchivierung Nationalbibliothek: https://d-nb.info/1257330497/34
Resolving-System, kostenfrei: https://hdl.handle.net/10419/278146
Get full text
Author Notes:Joep Lustenhouwer, Isabelle Salle
Description
Summary:We conduct a laboratory experiment in a fully-fledged macroeconomic model where participants receive information about future government spending shocks and are tasked with repeatedly forecasting output over a given horizon. By eliciting several-period-head predictions, we investigate forecast reaction to news and revision. The lab forecasts are consistent with stylized facts on reaction to news established in the survey literature. We find that subjects steadily learn the magnitude of the effect of the shocks on output, albeit not to full extent. We further find little support for fully backward-looking expectations. We rationalize the experimental data in the context of a Bayesian updating model, which provides a better description of the behaviors in longer-horizon environments and among more attentive and experienced subjects.
Physical Description:Online Resource
DOI:10.11588/heidok.00031616