Explainable multiview framework for dissecting spatial relationships from highly multiplexed data

The advancement of highly multiplexed spatial technologies requires scalable methods that can leverage spatial information. We present MISTy, a flexible, scalable, and explainable machine learning framework for extracting relationships from any spatial omics data, from dozens to thousands of measure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tanevski, Jovan (VerfasserIn) , Ramirez Flores, Ricardo O. (VerfasserIn) , Gabor, Attila (VerfasserIn) , Schapiro, Denis (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 April 2022
In: Genome biology
Year: 2022, Jahrgang: 23, Pages: 1-31
ISSN:1474-760X
DOI:10.1186/s13059-022-02663-5
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s13059-022-02663-5
Volltext
Verfasserangaben:Jovan Tanevski, Ricardo Omar Ramirez Flores, Attila Gabor, Denis Schapiro and Julio Saez-Rodriguez
Beschreibung
Zusammenfassung:The advancement of highly multiplexed spatial technologies requires scalable methods that can leverage spatial information. We present MISTy, a flexible, scalable, and explainable machine learning framework for extracting relationships from any spatial omics data, from dozens to thousands of measured markers. MISTy builds multiple views focusing on different spatial or functional contexts to dissect different effects. We evaluated MISTy on in silico and breast cancer datasets measured by imaging mass cytometry and spatial transcriptomics. We estimated structural and functional interactions coming from different spatial contexts in breast cancer and demonstrated how to relate MISTy’s results to clinical features.
Beschreibung:Gesehen am 17.05.2022
Beschreibung:Online Resource
ISSN:1474-760X
DOI:10.1186/s13059-022-02663-5