Generative networks for LHC events

LHC physics crucially relies on our ability to simulate events efficiently from first principles. Modern machine learning, specifically generative networks, will help us tackle simulation challenges for the coming LHC runs. Such networks can be employed within established simulation tools or as part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Butter, Anja (VerfasserIn) , Plehn, Tilman (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 19 Aug 2020
In: Arxiv
Year: 2020, Pages: 1-41
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2008.08558
Volltext
Verfasserangaben:Anja Butter and Tilman Plehn
Beschreibung
Zusammenfassung:LHC physics crucially relies on our ability to simulate events efficiently from first principles. Modern machine learning, specifically generative networks, will help us tackle simulation challenges for the coming LHC runs. Such networks can be employed within established simulation tools or as part of a new framework. Since neural networks can be inverted, they also open new avenues in LHC analyses.
Beschreibung:Gesehen am 09.11.2022
Beschreibung:Online Resource