Universality and chaos in quantum field theories

We investigate the eigenvalue spectrum of the staggered Dirac matrix in SU(3) gauge theory and in full QCD as well as in quenched U(1) theory on various lattice sizes. As a measure of the fluctuation properties of the eigenvalues, we consider the nearest-neighbor spacing distribution, $P(s)$. We fur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Berg, Bernd (VerfasserIn) , Bittner, Elmar (VerfasserIn) , Lombardo, Maria Paola (VerfasserIn) , Markum, Harald (VerfasserIn) , Pullirsch, Rainer (VerfasserIn) , Wettig, Tilo (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 7 Jul 2000
In: Arxiv
Year: 2000, Pages: 1-12
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/hep-lat/0007008
Volltext
Verfasserangaben:B.A. Berg, E. Bittner, H. Markum, R. Pullirsch, M.-P. Lombardo, T. Wettig
Beschreibung
Zusammenfassung:We investigate the eigenvalue spectrum of the staggered Dirac matrix in SU(3) gauge theory and in full QCD as well as in quenched U(1) theory on various lattice sizes. As a measure of the fluctuation properties of the eigenvalues, we consider the nearest-neighbor spacing distribution, $P(s)$. We further study two-color QCD at nonzero chemical potential, $\mu$, by constructing the spacing distribution of adjacent eigenvalues in the complex plane. We find that in all regions of their phase diagrams, compact lattice gauge theories have bulk spectral correlations given by random matrix theory, which is an indication for quantum chaos. In the confinement phase, the low-lying Dirac spectrum of these quantum field theories is well described by random matrix theory, exhibiting universal behavior.
Beschreibung:Gesehen am 18.10.2022
Beschreibung:Online Resource