On the continuum limit of the discrete Regge model in 4d
The Regge Calculus approximates a continuous manifold by a simplicial lattice, keeping the connectivities of the underlying lattice fixed and taking the edge lengths as degrees of freedom. The Discrete Regge model employed in this work limits the choice of the link lengths to a finite number. This m...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
13 October 2003
|
| In: |
Nuclear physics. Proceedings supplements
Year: 2003, Jahrgang: 119, Pages: 924-926 |
| ISSN: | 1873-3832 |
| DOI: | 10.1016/S0920-5632(03)80487-5 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/S0920-5632(03)80487-5 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0920563203804875 |
| Verfasserangaben: | Elmar Bittner, Wolfhard Janke and Harald Markum |
| Zusammenfassung: | The Regge Calculus approximates a continuous manifold by a simplicial lattice, keeping the connectivities of the underlying lattice fixed and taking the edge lengths as degrees of freedom. The Discrete Regge model employed in this work limits the choice of the link lengths to a finite number. This makes the computational evaluation of the path integral much faster. A main concern in lattice field theories is the existence of a continuum limit which requires the existence of a continuous phase transition. The recently conjectured second-order transition of the four-dimensional Regge skeleton at negative gravity coupling could be such a candidate. We examine this regime with Monte Carlo simulations and critically discuss its behavior. |
|---|---|
| Beschreibung: | Gesehen am 08.06.2022 |
| Beschreibung: | Online Resource |
| ISSN: | 1873-3832 |
| DOI: | 10.1016/S0920-5632(03)80487-5 |