On the continuum limit of the discrete Regge model in 4d

The Regge Calculus approximates a continuous manifold by a simplicial lattice, keeping the connectivities of the underlying lattice fixed and taking the edge lengths as degrees of freedom. The Discrete Regge model employed in this work limits the choice of the link lengths to a finite number. This m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bittner, Elmar (VerfasserIn) , Janke, Wolfhard (VerfasserIn) , Markum, Harald (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 October 2003
In: Nuclear physics. Proceedings supplements
Year: 2003, Jahrgang: 119, Pages: 924-926
ISSN:1873-3832
DOI:10.1016/S0920-5632(03)80487-5
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/S0920-5632(03)80487-5
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0920563203804875
Volltext
Verfasserangaben:Elmar Bittner, Wolfhard Janke and Harald Markum
Beschreibung
Zusammenfassung:The Regge Calculus approximates a continuous manifold by a simplicial lattice, keeping the connectivities of the underlying lattice fixed and taking the edge lengths as degrees of freedom. The Discrete Regge model employed in this work limits the choice of the link lengths to a finite number. This makes the computational evaluation of the path integral much faster. A main concern in lattice field theories is the existence of a continuum limit which requires the existence of a continuous phase transition. The recently conjectured second-order transition of the four-dimensional Regge skeleton at negative gravity coupling could be such a candidate. We examine this regime with Monte Carlo simulations and critically discuss its behavior.
Beschreibung:Gesehen am 08.06.2022
Beschreibung:Online Resource
ISSN:1873-3832
DOI:10.1016/S0920-5632(03)80487-5