The double scaling limit of random tensor models

Tensor models generalize matrix models and generate colored triangulations of pseudo-manifolds in dimensions D ≥ 3. The free energies of some models have been recently shown to admit a double scaling limit, i.e. large tensor size N while tuning to criticality, which turns out to be summable in dimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bonzom, Valentin (VerfasserIn) , Gurǎu, Rǎzvan (VerfasserIn) , Ryan, James P. (VerfasserIn) , Tanasa, Adrian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: September 8, 2014
In: Journal of high energy physics
Year: 2014, Heft: 9, Pages: 1-19
ISSN:1029-8479
DOI:10.1007/JHEP09(2014)051
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/JHEP09(2014)051
Volltext
Verfasserangaben:Valentin Bonzom, Razvan Gurau, James P. Ryan and Adrian Tanasa
Beschreibung
Zusammenfassung:Tensor models generalize matrix models and generate colored triangulations of pseudo-manifolds in dimensions D ≥ 3. The free energies of some models have been recently shown to admit a double scaling limit, i.e. large tensor size N while tuning to criticality, which turns out to be summable in dimension less than six. This double scaling limit is here extended to arbitrary models. This is done by means of the Schwinger-Dyson equations, which generalize the loop equations of random matrix models, coupled to a double scale analysis of the cumulants.
Beschreibung:Gesehen am 05.10.2022
Beschreibung:Online Resource
ISSN:1029-8479
DOI:10.1007/JHEP09(2014)051