The double scaling limit of random tensor models

Tensor models generalize matrix models and generate colored triangulations of pseudo-manifolds in dimensions $D\geq 3$. The free energies of some models have been recently shown to admit a double scaling limit, i.e. large tensor size $N$ while tuning to criticality, which turns out to be summable in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bonzom, Valentin (VerfasserIn) , Gurǎu, Rǎzvan (VerfasserIn) , Ryan, James P. (VerfasserIn) , Tanasa, Adrian (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: October 20, 2018
Ausgabe:Version v2
In: Arxiv
Year: 2014, Pages: 1-37
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1404.7517
Volltext
Verfasserangaben:Valentin Bonzom, Razvan Gurau, James P. Ryan, and Adrian Tanasa
Beschreibung
Zusammenfassung:Tensor models generalize matrix models and generate colored triangulations of pseudo-manifolds in dimensions $D\geq 3$. The free energies of some models have been recently shown to admit a double scaling limit, i.e. large tensor size $N$ while tuning to criticality, which turns out to be summable in dimension less than six. This double scaling limit is here extended to arbitrary models. This is done by means of the Schwinger--Dyson equations, which generalize the loop equations of random matrix models, coupled to a double scale analysis of the cumulants.
Beschreibung:Version 1 vom 29. April 2014, Version 2 vom 31. Juli 2014
Gesehen am 05.10.2022
Beschreibung:Online Resource