Universality and borel summability of arbitrary quartic tensor models
We extend the study of \emph{melonic} quartic tensor models to models with arbitrary quartic interactions. This extension requires a new version of the loop vertex expansion using several species of intermediate fields and iterated Cauchy-Schwarz inequalities. Borel summability is proven, uniformly...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
July 2, 2018
|
| In: |
Arxiv
Year: 2014, Pages: 1-30 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1403.0170 |
| Verfasserangaben: | Thibault Delepouve, Razvan Gurau and Vincent Rivasseau |
| Zusammenfassung: | We extend the study of \emph{melonic} quartic tensor models to models with arbitrary quartic interactions. This extension requires a new version of the loop vertex expansion using several species of intermediate fields and iterated Cauchy-Schwarz inequalities. Borel summability is proven, uniformly as the tensor size $N$ becomes large. Every cumulant is written as a sum of explicitly calculated terms plus a remainder, suppressed in $1/N$. Together with the existence of the large $N$ limit of the second cumulant, this proves that the corresponding sequence of probability measures is uniformly bounded and obeys the tensorial universality theorem. |
|---|---|
| Beschreibung: | Version 1 vom 2. März 2014, Version 2 vom 29. November 2014 Version v2 Gesehen am 05.10.2022 |
| Beschreibung: | Online Resource |