Counting line-colored d-ary trees

Random tensor models are generalizations of matrix models which also support a 1/N expansion. The dominant observables are in correspondence with some trees, namely rooted trees with vertices of degree at most $D$ and lines colored by a number $i$ from 1 to $D$ such that no two lines connecting a ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bonzom, Valentin (VerfasserIn) , Gurǎu, Rǎzvan (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 19 Jun 2012
In: Arxiv
Year: 2012, Pages: 1-6
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1206.4203
Volltext
Verfasserangaben:Valentin Bonzom and Razvan Gurau
Beschreibung
Zusammenfassung:Random tensor models are generalizations of matrix models which also support a 1/N expansion. The dominant observables are in correspondence with some trees, namely rooted trees with vertices of degree at most $D$ and lines colored by a number $i$ from 1 to $D$ such that no two lines connecting a vertex to its descendants have the same color. In this Letter we study by independent methods a generating function for these observables. We prove that the number of such trees with exactly $p_i$ lines of color $i$ is $\frac{1}{\sum_{i=1}^D p_i +1} \binom{\sum_{i=1}^D p_i+1}{p_1} ... \binom{\sum_{i=1}^D p_i+1}{p_D}$.
Beschreibung:Gesehen am 05.10.2022
Identifizierung der Ressource nach: November 18, 2018
Beschreibung:Online Resource