The Ponzano-Regge asymptotic of the 6j symbol: an elementary proof

In this paper we give a direct proof of the Ponzano-Regge asymptotic formula for the Wigner 6j symbol starting from Racah’s single sum formula. Our method treats halfinteger and integer spins on the same footing. The generalization to Minkowskian tetrahedra is direct. All orders subleading contribut...

Full description

Saved in:
Bibliographic Details
Main Author: Gurǎu, Rǎzvan (Author)
Format: Article (Journal)
Language:English
Published: October 21, 2008
In: Annales Henri Poincaré
Year: 2008, Volume: 9, Issue: 7, Pages: 1413-1424
ISSN:1424-0661
DOI:10.1007/s00023-008-0392-6
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00023-008-0392-6
Get full text
Author Notes:Razvan Gurau
Description
Summary:In this paper we give a direct proof of the Ponzano-Regge asymptotic formula for the Wigner 6j symbol starting from Racah’s single sum formula. Our method treats halfinteger and integer spins on the same footing. The generalization to Minkowskian tetrahedra is direct. All orders subleading contributions can be computed in this setting. This result should be relevant for the introduction of renormalization scales in spin foam models.
Item Description:Gesehen am 29.09.2022
Physical Description:Online Resource
ISSN:1424-0661
DOI:10.1007/s00023-008-0392-6