The Ponzano-Regge asymptotic of the 6j symbol: an elementary proof

In this paper we give a direct proof of the Ponzano-Regge asymptotic formula for the Wigner 6j symbol starting from Racah’s single sum formula. Our method treats halfinteger and integer spins on the same footing. The generalization to Minkowskian tetrahedra is direct. All orders subleading contribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gurǎu, Rǎzvan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: October 21, 2008
In: Annales Henri Poincaré
Year: 2008, Jahrgang: 9, Heft: 7, Pages: 1413-1424
ISSN:1424-0661
DOI:10.1007/s00023-008-0392-6
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00023-008-0392-6
Volltext
Verfasserangaben:Razvan Gurau
Beschreibung
Zusammenfassung:In this paper we give a direct proof of the Ponzano-Regge asymptotic formula for the Wigner 6j symbol starting from Racah’s single sum formula. Our method treats halfinteger and integer spins on the same footing. The generalization to Minkowskian tetrahedra is direct. All orders subleading contributions can be computed in this setting. This result should be relevant for the introduction of renormalization scales in spin foam models.
Beschreibung:Gesehen am 29.09.2022
Beschreibung:Online Resource
ISSN:1424-0661
DOI:10.1007/s00023-008-0392-6