Absolute quantification of sp3 defects in semiconducting single-wall carbon nanotubes by Raman spectroscopy

The functionalization of semiconducting single-wall carbon nanotubes (SWCNTs) with luminescent sp3 defects creates red-shifted emission features in the near-infrared and boosts their photoluminescence quantum yields (PLQYs). While multiple synthetic routes for the selective introduction of sp3 defec...

Full description

Saved in:
Bibliographic Details
Main Authors: Sebastian, Finn (Author) , Zorn, Nicolas (Author) , Settele, Simon (Author) , Lindenthal, Sebastian (Author) , Berger, Felix J. (Author) , Bendel, Christoph (Author) , Li, Han (Author) , Flavel, Benjamin S. (Author) , Zaumseil, Jana (Author)
Format: Article (Journal)
Language:English
Published: April 14, 2022
In: The journal of physical chemistry letters
Year: 2022, Volume: 13, Issue: 16, Pages: 3542-3548
ISSN:1948-7185
DOI:10.1021/acs.jpclett.2c00758
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1021/acs.jpclett.2c00758
Get full text
Author Notes:Finn L. Sebastian, Nicolas F. Zorn, Simon Settele, Sebastian Lindenthal, Felix J. Berger, Christoph Bendel, Han Li, Benjamin S. Flavel and Jana Zaumseil
Description
Summary:The functionalization of semiconducting single-wall carbon nanotubes (SWCNTs) with luminescent sp3 defects creates red-shifted emission features in the near-infrared and boosts their photoluminescence quantum yields (PLQYs). While multiple synthetic routes for the selective introduction of sp3 defects have been developed, a convenient metric to precisely quantify the number of defects on a SWCNT lattice is not available. Here, we present a direct and simple quantification protocol based on a linear correlation of the integrated Raman D/G+ signal ratios and defect densities as extracted from PLQY measurements. Corroborated by a statistical analysis of single-nanotube emission spectra at cryogenic temperature, this method enables the quantitative evaluation of sp3 defect densities in (6,5) SWCNTs with an error of ±3 defects per micrometer and the determination of oscillator strengths for different defect types. The developed protocol requires only standard Raman spectroscopy and is independent of the defect configuration, dispersion solvent, and nanotube length.
Item Description:Die "3" ist im Titel hochgestellt
Gesehen am 17.06.2022
Physical Description:Online Resource
ISSN:1948-7185
DOI:10.1021/acs.jpclett.2c00758