Diffusion pore imaging in the presence of extraporal water
Diffusion-weighted imaging (DWI) is a powerful, non-invasive tool which is widely used in clinical routine. Mostly, apparent diffusion coefficient maps are acquired, which cannot be related directly to cellular structure. More recently it was shown that DWI is able to reconstruct pore shapes using a...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
18 April 2022
|
| In: |
Journal of magnetic resonance
Year: 2022, Volume: 339, Pages: 1-12 |
| ISSN: | 1096-0856 |
| DOI: | 10.1016/j.jmr.2022.107219 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jmr.2022.107219 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1090780722000775 |
| Author Notes: | Dominik Ludwig, Frederik Bernd Laun, Karel D. Klika, Julian Rauch, Mark Edward Ladd, Peter Bachert, Tristan Anselm Kuder |
| Summary: | Diffusion-weighted imaging (DWI) is a powerful, non-invasive tool which is widely used in clinical routine. Mostly, apparent diffusion coefficient maps are acquired, which cannot be related directly to cellular structure. More recently it was shown that DWI is able to reconstruct pore shapes using a specialized magnetic field gradient scheme so that cell size distributions may be obtained. So far, artificial systems have been used for experimental demonstration without extraporal signal components and relatively low gradient amplitudes. The aim of this study was to investigate the feasibility of diffusion pore imaging in the presence of extraporal fluids and to develop correction methods for the effects arising from extraporal signal contributions. Monte Carlo simulations and validation experiments on a 14.1 T NMR spectrometer equipped with a dedicated diffusion probe head were performed. Both by using a filter gradient approach suppressing extraporal signal components as well as by using post-processing methods relying on the Gaussian phase approximation, it was possible to reconstruct pore space functions in the presence of extraporal fluids with little to no deviations from the expectations. These results may be a significant step towards application of diffusion pore imaging to biological samples. |
|---|---|
| Item Description: | Gesehen am 27.06.2022 |
| Physical Description: | Online Resource |
| ISSN: | 1096-0856 |
| DOI: | 10.1016/j.jmr.2022.107219 |