Stability analysis of non-thermal fixed points in longitudinally expanding kinetic theory

We use the Hamiltonian formulation of kinetic theory to perform a stability analysis of non-thermal fixed points in a non-Abelian plasma. We construct a perturbative expansion of the Fokker-Planck collision kernel in an adiabatic approximation and show that the (next-to-)leading order solutions repr...

Full description

Saved in:
Bibliographic Details
Main Authors: Mikheev, Aleksandr N. (Author) , Mazeliauskas, Aleksas (Author) , Berges, Jürgen (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 29 Jun 2022
In: Arxiv
Year: 2022, Pages: 1-9
DOI:10.48550/arXiv.2203.02299
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2203.02299
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2203.02299
Get full text
Author Notes:Aleksandr N. Mikheev, Aleksas Mazeliauskas, and Jürgen Berges
Description
Summary:We use the Hamiltonian formulation of kinetic theory to perform a stability analysis of non-thermal fixed points in a non-Abelian plasma. We construct a perturbative expansion of the Fokker-Planck collision kernel in an adiabatic approximation and show that the (next-to-)leading order solutions reproduce the known non-thermal fixed point scaling exponents. Working at next-to-leading order, we derive the stability equations for scaling exponents and find the relaxation rate to the non-thermal fixed point. This approach provides the basis for an understanding of the prescaling phenomena observed in QCD kinetic theory and non-relativistic Bose gas systems.
Item Description:Gesehen am 20.09.2022
Physical Description:Online Resource
DOI:10.48550/arXiv.2203.02299