Computing the number of certain Galois representations mod p
Using the link between Galois representations and modular forms established by Serre’s Conjecture, we compute, for every prime p ≤ 2593, a lower bound for the number of isomorphism classes of Galois representation of Q on a two-dimensional vector space over F[bar]p which are irreducible, odd, and un...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2011-11-27
|
| In: |
Journal de théorie des nombres de Bordeaux
Year: 2011, Volume: 23, Issue: 3, Pages: 603-627 |
| ISSN: | 2118-8572 |
| DOI: | 10.5802/jtnb.779 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.5802/jtnb.779 Verlag, lizenzpflichtig, Volltext: https://jtnb.centre-mersenne.org/item/JTNB_2011__23_3_603_0/ |
| Author Notes: | par Tommaso Giorgio Centeleghe |
| Summary: | Using the link between Galois representations and modular forms established by Serre’s Conjecture, we compute, for every prime p ≤ 2593, a lower bound for the number of isomorphism classes of Galois representation of Q on a two-dimensional vector space over F[bar]p which are irreducible, odd, and unramified outside p. |
|---|---|
| Item Description: | Gesehen am 28.06.2022 |
| Physical Description: | Online Resource |
| ISSN: | 2118-8572 |
| DOI: | 10.5802/jtnb.779 |