Computing the number of certain Galois representations mod p

Using the link between Galois representations and modular forms established by Serre’s Conjecture, we compute, for every prime p ≤ 2593, a lower bound for the number of isomorphism classes of Galois representation of Q on a two-dimensional vector space over F[bar]p which are irreducible, odd, and un...

Full description

Saved in:
Bibliographic Details
Main Author: Centeleghe, Tommaso (Author)
Format: Article (Journal)
Language:English
Published: 2011-11-27
In: Journal de théorie des nombres de Bordeaux
Year: 2011, Volume: 23, Issue: 3, Pages: 603-627
ISSN:2118-8572
DOI:10.5802/jtnb.779
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.5802/jtnb.779
Verlag, lizenzpflichtig, Volltext: https://jtnb.centre-mersenne.org/item/JTNB_2011__23_3_603_0/
Get full text
Author Notes:par Tommaso Giorgio Centeleghe
Description
Summary:Using the link between Galois representations and modular forms established by Serre’s Conjecture, we compute, for every prime p ≤ 2593, a lower bound for the number of isomorphism classes of Galois representation of Q on a two-dimensional vector space over F[bar]p which are irreducible, odd, and unramified outside p.
Item Description:Gesehen am 28.06.2022
Physical Description:Online Resource
ISSN:2118-8572
DOI:10.5802/jtnb.779