Computing the number of certain Galois representations mod p
Using the link between Galois representations and modular forms established by Serre’s Conjecture, we compute, for every prime p ≤ 2593, a lower bound for the number of isomorphism classes of Galois representation of Q on a two-dimensional vector space over F[bar]p which are irreducible, odd, and un...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2011-11-27
|
| In: |
Journal de théorie des nombres de Bordeaux
Year: 2011, Jahrgang: 23, Heft: 3, Pages: 603-627 |
| ISSN: | 2118-8572 |
| DOI: | 10.5802/jtnb.779 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.5802/jtnb.779 Verlag, lizenzpflichtig, Volltext: https://jtnb.centre-mersenne.org/item/JTNB_2011__23_3_603_0/ |
| Verfasserangaben: | par Tommaso Giorgio Centeleghe |
| Zusammenfassung: | Using the link between Galois representations and modular forms established by Serre’s Conjecture, we compute, for every prime p ≤ 2593, a lower bound for the number of isomorphism classes of Galois representation of Q on a two-dimensional vector space over F[bar]p which are irreducible, odd, and unramified outside p. |
|---|---|
| Beschreibung: | Gesehen am 28.06.2022 |
| Beschreibung: | Online Resource |
| ISSN: | 2118-8572 |
| DOI: | 10.5802/jtnb.779 |