Universal dependence on disorder of two-dimensional randomly diluted and random-bond ±J Ising models

We consider the two-dimensional randomly site diluted Ising model and the random-bond ±J Ising model (also called the Edwards-Anderson model), and study their critical behavior at the paramagnetic-ferromagnetic transition. The critical behavior of thermodynamic quantities can be derived from a set o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hasenbusch, Martin (VerfasserIn) , Toldin, Francesco Parisen (VerfasserIn) , Pelissetto, Andrea (VerfasserIn) , Vicari, Ettore (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 11 July 2008
In: Physical review. E, Statistical, nonlinear, and soft matter physics
Year: 2008, Jahrgang: 78, Heft: 1, Pages: 1-13
ISSN:1550-2376
DOI:10.1103/PhysRevE.78.011110
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevE.78.011110
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevE.78.011110
Volltext
Verfasserangaben:Martin Hasenbusch, Francesco Parisen Toldin, Andrea Pelissetto, and Ettore Vicari
Beschreibung
Zusammenfassung:We consider the two-dimensional randomly site diluted Ising model and the random-bond ±J Ising model (also called the Edwards-Anderson model), and study their critical behavior at the paramagnetic-ferromagnetic transition. The critical behavior of thermodynamic quantities can be derived from a set of renormalization-group equations, in which disorder is a marginally irrelevant perturbation at the two-dimensional Ising fixed point. We discuss their solutions, focusing in particular on the universality of the logarithmic corrections arising from the presence of disorder. Then, we present a finite-size scaling analysis of high-statistics Monte Carlo simulations. The numerical results confirm the renormalization-group predictions, and in particular the universality of the logarithmic corrections to the Ising behavior due to quenched dilution.
Beschreibung:Im Titel ist "+" hochgestellt und "-" tiefgestellt
Gesehen am 09.09.2022
Beschreibung:Online Resource
ISSN:1550-2376
DOI:10.1103/PhysRevE.78.011110