Multicritical Nishimori point in the phase diagram of the ±J ising model on a square lattice
We investigate the critical behavior of the random-bond ±J Ising model on a square lattice at the multicritical Nishimori point in the T−p phase diagram, where T is the temperature and p is the disorder parameter (p=1 corresponds to the pure Ising model). We perform a finite-size scaling analysis of...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
15 May 2008
|
| In: |
Physical review. E, Statistical, nonlinear, and soft matter physics
Year: 2008, Jahrgang: 77, Heft: 5, Pages: 1-10 |
| ISSN: | 1550-2376 |
| DOI: | 10.1103/PhysRevE.77.051115 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevE.77.051115 Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevE.77.051115 |
| Verfasserangaben: | Martin Hasenbusch, Francesco Parisen Toldin, Andrea Pelissetto, and Ettore Vicari |
| Zusammenfassung: | We investigate the critical behavior of the random-bond ±J Ising model on a square lattice at the multicritical Nishimori point in the T−p phase diagram, where T is the temperature and p is the disorder parameter (p=1 corresponds to the pure Ising model). We perform a finite-size scaling analysis of high-statistics Monte Carlo simulations along the Nishimori line defined by 2p−1=tanh(1/T), along which the multicritical point lies. The multicritical Nishimori point is located at p∗=0.890 81(7), T∗=0.9528(4), and the renormalization-group dimensions of the operators that control the multicritical behavior are y1=0.655(15) and y2=0.250(2); they correspond to the thermal exponent ν≡1/y2=4.00(3) and to the crossover exponent ϕ≡y1/y2=2.62(6). |
|---|---|
| Beschreibung: | Im Titel ist "plus" hochgestellt und "minus" tiefgestellt Gesehen am 09.09.2022 |
| Beschreibung: | Online Resource |
| ISSN: | 1550-2376 |
| DOI: | 10.1103/PhysRevE.77.051115 |