Multicritical Nishimori point in the phase diagram of the ±J ising model on a square lattice

We investigate the critical behavior of the random-bond ±J Ising model on a square lattice at the multicritical Nishimori point in the T−p phase diagram, where T is the temperature and p is the disorder parameter (p=1 corresponds to the pure Ising model). We perform a finite-size scaling analysis of...

Full description

Saved in:
Bibliographic Details
Main Authors: Hasenbusch, Martin (Author) , Toldin, Francesco Parisen (Author) , Pelissetto, Andrea (Author) , Vicari, Ettore (Author)
Format: Article (Journal)
Language:English
Published: 15 May 2008
In: Physical review. E, Statistical, nonlinear, and soft matter physics
Year: 2008, Volume: 77, Issue: 5, Pages: 1-10
ISSN:1550-2376
DOI:10.1103/PhysRevE.77.051115
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevE.77.051115
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevE.77.051115
Get full text
Author Notes:Martin Hasenbusch, Francesco Parisen Toldin, Andrea Pelissetto, and Ettore Vicari
Description
Summary:We investigate the critical behavior of the random-bond ±J Ising model on a square lattice at the multicritical Nishimori point in the T−p phase diagram, where T is the temperature and p is the disorder parameter (p=1 corresponds to the pure Ising model). We perform a finite-size scaling analysis of high-statistics Monte Carlo simulations along the Nishimori line defined by 2p−1=tanh(1/T), along which the multicritical point lies. The multicritical Nishimori point is located at p∗=0.890 81(7), T∗=0.9528(4), and the renormalization-group dimensions of the operators that control the multicritical behavior are y1=0.655(15) and y2=0.250(2); they correspond to the thermal exponent ν≡1/y2=4.00(3) and to the crossover exponent ϕ≡y1/y2=2.62(6).
Item Description:Im Titel ist "plus" hochgestellt und "minus" tiefgestellt
Gesehen am 09.09.2022
Physical Description:Online Resource
ISSN:1550-2376
DOI:10.1103/PhysRevE.77.051115