Relaxational dynamics in 3D randomly diluted Ising models

We study the purely relaxational dynamics (model A) at criticality in three-dimensional disordered Ising systems whose static critical behaviour belongs to the randomly diluted Ising universality class. We consider the site-diluted and bond-diluted Ising models, and the ± J Ising model along the par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hasenbusch, Martin (VerfasserIn) , Pelissetto, Andrea (VerfasserIn) , Vicari, Ettore (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 November 2007
In: Journal of statistical mechanics: theory and experiment
Year: 2007, Heft: 11, Pages: 1-37
ISSN:1742-5468
DOI:10.1088/1742-5468/2007/11/P11009
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/1742-5468/2007/11/P11009
Volltext
Verfasserangaben:Martin Hasenbusch, Andrea Pelissetto and Ettore Vicari
Beschreibung
Zusammenfassung:We study the purely relaxational dynamics (model A) at criticality in three-dimensional disordered Ising systems whose static critical behaviour belongs to the randomly diluted Ising universality class. We consider the site-diluted and bond-diluted Ising models, and the ± J Ising model along the paramagnetic-ferromagnetic transition line. We perform Monte Carlo simulations at the critical point using the Metropolis algorithm and study the dynamic behaviour in equilibrium at various values of the disorder parameter. The results provide a robust evidence of the existence of a unique model-A dynamic universality class which describes the relaxational critical dynamics in all considered models. In particular, the analysis of the size dependence of suitably defined autocorrelation times at the critical point provides the estimate z = 2.35(2) for the universal dynamic critical exponent. We also study the off-equilibrium relaxational dynamics following a quench from to Tc. In agreement with the field-theory scenario, the analysis of the off-equilibrium dynamic critical behaviour gives an estimate of z that is perfectly consistent with the equilibrium estimate z = 2.35(2).
Beschreibung:Gesehen am 09.09.2022
Beschreibung:Online Resource
ISSN:1742-5468
DOI:10.1088/1742-5468/2007/11/P11009