Finite nonabelian p-groups having exactly one maximal subgroup with a noncyclic center

We prove here that a nonabelian finite p-group G has exactly one maximal subgroup with a noncyclic center if and only if Z(G) is cyclic and G has exactly one normal abelian subgroup of type (p, p).

Saved in:
Bibliographic Details
Main Author: Janko, Zvonimir (Author)
Format: Article (Journal)
Language:English
Published: 11 January 2011
In: Archiv der Mathematik
Year: 2011, Volume: 96, Issue: 2, Pages: 101-103
ISSN:1420-8938
DOI:10.1007/s00013-010-0212-3
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00013-010-0212-3
Get full text
Author Notes:Zvonimir Janko
Description
Summary:We prove here that a nonabelian finite p-group G has exactly one maximal subgroup with a noncyclic center if and only if Z(G) is cyclic and G has exactly one normal abelian subgroup of type (p, p).
Item Description:Gesehen am 04.07.2022
Physical Description:Online Resource
ISSN:1420-8938
DOI:10.1007/s00013-010-0212-3