Finite nonabelian p-groups having exactly one maximal subgroup with a noncyclic center
We prove here that a nonabelian finite p-group G has exactly one maximal subgroup with a noncyclic center if and only if Z(G) is cyclic and G has exactly one normal abelian subgroup of type (p, p).
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
11 January 2011
|
| In: |
Archiv der Mathematik
Year: 2011, Jahrgang: 96, Heft: 2, Pages: 101-103 |
| ISSN: | 1420-8938 |
| DOI: | 10.1007/s00013-010-0212-3 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00013-010-0212-3 |
| Verfasserangaben: | Zvonimir Janko |
| Zusammenfassung: | We prove here that a nonabelian finite p-group G has exactly one maximal subgroup with a noncyclic center if and only if Z(G) is cyclic and G has exactly one normal abelian subgroup of type (p, p). |
|---|---|
| Beschreibung: | Gesehen am 04.07.2022 |
| Beschreibung: | Online Resource |
| ISSN: | 1420-8938 |
| DOI: | 10.1007/s00013-010-0212-3 |