Multicritical behaviour in the fully frustrated XY model and related systems
We study the phase diagram and critical behaviour of the two-dimensional square-lattice fully frustrated XY model (FFXY) and of two related models, a lattice discretization of the Landau-Ginzburg-Wilson Hamiltonian for the critical modes of the FFXY model, and a coupled Ising XY model. We present a...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
5 December 2005
|
| In: |
Journal of statistical mechanics: theory and experiment
Year: 2005, Heft: 12, Pages: 1-62 |
| ISSN: | 1742-5468 |
| DOI: | 10.1088/1742-5468/2005/12/P12002 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/1742-5468/2005/12/P12002 |
| Verfasserangaben: | Martin Hasenbusch, Andrea Pelissetto and Ettore Vicari |
| Zusammenfassung: | We study the phase diagram and critical behaviour of the two-dimensional square-lattice fully frustrated XY model (FFXY) and of two related models, a lattice discretization of the Landau-Ginzburg-Wilson Hamiltonian for the critical modes of the FFXY model, and a coupled Ising XY model. We present a finite-size-scaling analysis of the results of high-precision Monte Carlo simulations on L × L square lattices, up to L = O (103). In the FFXY model and in the other models, when the transitions are continuous, there are two very close but separate transitions. There is an Ising chiral transition characterized by the onset of chiral long-range order while spins remain paramagnetic. Then, as temperature decreases, the systems undergo a Kosterlitz-Thouless spin transition to a phase with quasi-long-range order. The FFXY model and the other models, in a rather large parameter region, show a crossover behaviour at the chiral and spin transitions that is universal to some extent. We conjecture that this universal behaviour is due to a multicritical point. The numerical data suggest that the relevant multicritical point is a zero-temperature transition. A possible candidate is the O(4) point that controls the low-temperature behaviour of the 4-vector model. |
|---|---|
| Beschreibung: | Gesehen am 06.07.2022 |
| Beschreibung: | Online Resource |
| ISSN: | 1742-5468 |
| DOI: | 10.1088/1742-5468/2005/12/P12002 |