Multicritical behaviour in the fully frustrated XY model and related systems

We study the phase diagram and critical behaviour of the two-dimensional square-lattice fully frustrated XY model (FFXY) and of two related models, a lattice discretization of the Landau-Ginzburg-Wilson Hamiltonian for the critical modes of the FFXY model, and a coupled Ising XY model. We present a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hasenbusch, Martin (VerfasserIn) , Pelissetto, Andrea (VerfasserIn) , Vicari, Ettore (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 5 December 2005
In: Journal of statistical mechanics: theory and experiment
Year: 2005, Heft: 12, Pages: 1-62
ISSN:1742-5468
DOI:10.1088/1742-5468/2005/12/P12002
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/1742-5468/2005/12/P12002
Volltext
Verfasserangaben:Martin Hasenbusch, Andrea Pelissetto and Ettore Vicari
Beschreibung
Zusammenfassung:We study the phase diagram and critical behaviour of the two-dimensional square-lattice fully frustrated XY model (FFXY) and of two related models, a lattice discretization of the Landau-Ginzburg-Wilson Hamiltonian for the critical modes of the FFXY model, and a coupled Ising XY model. We present a finite-size-scaling analysis of the results of high-precision Monte Carlo simulations on L × L square lattices, up to L = O (103). In the FFXY model and in the other models, when the transitions are continuous, there are two very close but separate transitions. There is an Ising chiral transition characterized by the onset of chiral long-range order while spins remain paramagnetic. Then, as temperature decreases, the systems undergo a Kosterlitz-Thouless spin transition to a phase with quasi-long-range order. The FFXY model and the other models, in a rather large parameter region, show a crossover behaviour at the chiral and spin transitions that is universal to some extent. We conjecture that this universal behaviour is due to a multicritical point. The numerical data suggest that the relevant multicritical point is a zero-temperature transition. A possible candidate is the O(4) point that controls the low-temperature behaviour of the 4-vector model.
Beschreibung:Gesehen am 06.07.2022
Beschreibung:Online Resource
ISSN:1742-5468
DOI:10.1088/1742-5468/2005/12/P12002