Leveraging OpenStreetMap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detection

Humans rely on clean water for their health, well-being, and various socio-economic activities. During the past few years, the COVID-19 pandemic has been a constant reminder of about the importance of hygiene and sanitation for public health. The most common approach to securing clean water supplies...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Hao (Author) , Zech, Johannes (Author) , Hong, Danfeng (Author) , Ghamisi, Pedram (Author) , Schultz, Michael (Author) , Zipf, Alexander (Author)
Format: Article (Journal)
Language:English
Published: 15 May 2022
In: International journal of applied earth observation and geoinformation
Year: 2022, Volume: 110, Pages: 1-11
ISSN:1872-826X
DOI:10.1016/j.jag.2022.102804
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.jag.2022.102804
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S1569843222000061
Get full text
Author Notes:Hao Li, Johannes Zech, Danfeng Hong, Pedram Ghamisi, Michael Schultz, Alexander Zipf

MARC

LEADER 00000caa a2200000 c 4500
001 1809330475
003 DE-627
005 20220820214755.0
007 cr uuu---uuuuu
008 220706s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jag.2022.102804  |2 doi 
035 |a (DE-627)1809330475 
035 |a (DE-599)KXP1809330475 
035 |a (OCoLC)1341463374 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Li, Hao  |e VerfasserIn  |0 (DE-588)1197649670  |0 (DE-627)1679340883  |4 aut 
245 1 0 |a Leveraging OpenStreetMap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detection  |c Hao Li, Johannes Zech, Danfeng Hong, Pedram Ghamisi, Michael Schultz, Alexander Zipf 
264 1 |c 15 May 2022 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.07.2022 
520 |a Humans rely on clean water for their health, well-being, and various socio-economic activities. During the past few years, the COVID-19 pandemic has been a constant reminder of about the importance of hygiene and sanitation for public health. The most common approach to securing clean water supplies for this purpose is via wastewater treatment. To date, an effective method of detecting wastewater treatment plants (WWTP) accurately and automatically via remote sensing is unavailable. In this paper, we provide a solution to this task by proposing a novel joint deep learning (JDL) method that consists of a fine-tuned object detection network and a multi-task residual attention network (RAN). By leveraging OpenStreetMap (OSM) and multimodal remote sensing (RS) data, our JDL method is able to simultaneously tackle two different tasks: land use land cover (LULC) and WWTP classification. Moreover, JDL exploits the complementary effects between these tasks for a performance gain. We train JDL using 4,187 WWTP features and 4,200 LULC samples and validate the performance of the proposed method over a selected area around Stuttgart with 723 WWTP features and 1,200 LULC samples to generate an LULC classification map and a WWTP detection map. Extensive experiments conducted with different comparative methods demonstrate the effectiveness and efficiency of our JDL method in automatic WWTP detection in comparison with single-modality/single-task or traditional survey methods. Moreover, lessons learned pave the way for future works to simultaneously and effectively address multiple large-scale mapping tasks (e.g., both mapping LULC and detecting WWTP) from multimodal RS data via deep learning. 
650 4 |a GeoAI 
650 4 |a multi-task learning 
650 4 |a multimodal 
650 4 |a object detection 
650 4 |a OpenStreetMap 
650 4 |a SDG 6 
650 4 |a volunteered geographic information 
650 4 |a wastewater treatment 
700 1 |a Zech, Johannes  |e VerfasserIn  |4 aut 
700 1 |a Hong, Danfeng  |e VerfasserIn  |4 aut 
700 1 |a Ghamisi, Pedram  |e VerfasserIn  |4 aut 
700 1 |a Schultz, Michael  |d 1976-  |e VerfasserIn  |0 (DE-588)102590768X  |0 (DE-627)725523905  |0 (DE-576)370893107  |4 aut 
700 1 |a Zipf, Alexander  |d 1971-  |e VerfasserIn  |0 (DE-588)123246369  |0 (DE-627)082437076  |0 (DE-576)175641056  |4 aut 
773 0 8 |i Enthalten in  |t International journal of applied earth observation and geoinformation  |d Amsterdam [u.a.] : Elsevier Science, 1999  |g 110(2022), Artikel-ID 102804, Seite 1-11  |h Online-Ressource  |w (DE-627)359784119  |w (DE-600)2097960-5  |w (DE-576)25927254X  |x 1872-826X  |7 nnas  |a Leveraging OpenStreetMap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detection 
773 1 8 |g volume:110  |g year:2022  |g elocationid:102804  |g pages:1-11  |g extent:11  |a Leveraging OpenStreetMap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detection 
856 4 0 |u https://doi.org/10.1016/j.jag.2022.102804  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S1569843222000061  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20220706 
993 |a Article 
994 |a 2022 
998 |g 123246369  |a Zipf, Alexander  |m 123246369:Zipf, Alexander  |d 120000  |d 120700  |e 120000PZ123246369  |e 120700PZ123246369  |k 0/120000/  |k 1/120000/120700/  |p 6  |y j 
998 |g 102590768X  |a Schultz, Michael  |m 102590768X:Schultz, Michael  |d 120000  |d 120700  |e 120000PS102590768X  |e 120700PS102590768X  |k 0/120000/  |k 1/120000/120700/  |p 5 
998 |g 1197649670  |a Li, Hao  |m 1197649670:Li, Hao  |d 120000  |d 120700  |e 120000PL1197649670  |e 120700PL1197649670  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1809330475  |e 4161945531 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1809330475","id":{"eki":["1809330475"],"doi":["10.1016/j.jag.2022.102804"]},"name":{"displayForm":["Hao Li, Johannes Zech, Danfeng Hong, Pedram Ghamisi, Michael Schultz, Alexander Zipf"]},"person":[{"family":"Li","display":"Li, Hao","roleDisplay":"VerfasserIn","given":"Hao","role":"aut"},{"given":"Johannes","roleDisplay":"VerfasserIn","display":"Zech, Johannes","family":"Zech","role":"aut"},{"role":"aut","family":"Hong","roleDisplay":"VerfasserIn","display":"Hong, Danfeng","given":"Danfeng"},{"family":"Ghamisi","display":"Ghamisi, Pedram","roleDisplay":"VerfasserIn","given":"Pedram","role":"aut"},{"roleDisplay":"VerfasserIn","given":"Michael","display":"Schultz, Michael","family":"Schultz","role":"aut"},{"role":"aut","display":"Zipf, Alexander","roleDisplay":"VerfasserIn","given":"Alexander","family":"Zipf"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Leveraging OpenStreetMap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detection","title":"Leveraging OpenStreetMap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detection"}],"origin":[{"dateIssuedDisp":"15 May 2022","dateIssuedKey":"2022"}],"physDesc":[{"extent":"11 S."}],"relHost":[{"id":{"issn":["1872-826X"],"zdb":["2097960-5"],"eki":["359784119"]},"recId":"359784119","origin":[{"publisher":"Elsevier Science","dateIssuedDisp":"1999-","publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1999"}],"pubHistory":["1.1999 - 13.2011; Vol. 14.2012 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 20.02.2023"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"110","extent":"11","text":"110(2022), Artikel-ID 102804, Seite 1-11","year":"2022","pages":"1-11"},"disp":"Leveraging OpenStreetMap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detectionInternational journal of applied earth observation and geoinformation","language":["eng"],"title":[{"title":"International journal of applied earth observation and geoinformation","title_sort":"International journal of applied earth observation and geoinformation"}]}],"note":["Gesehen am 06.07.2022"],"language":["eng"]} 
SRT |a LIHAOZECHJLEVERAGING1520