Iterating block spin transformations of the O(3) nonlinear σ model

We study the iteration of block spin transformations in the O(3) symmetric nonlinear σ model on a two-dimensional square lattice with the help of the Monte Carlo method. In contrast with the classical Monte Carlo renormalization group approach, we do attempt to explicitly compute the block spin effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gottlob, Aloysius P. (VerfasserIn) , Hasenbusch, Martin (VerfasserIn) , Pinn, Klaus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 July 1996
In: Physical review. D, Particles, fields, gravitation, and cosmology
Year: 1996, Jahrgang: 54, Heft: 2, Pages: 1736-1747
ISSN:1550-2368
DOI:10.1103/PhysRevD.54.1736
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.54.1736
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.54.1736
Volltext
Verfasserangaben:A.P. Gottlob, M. Hasenbusch, K. Pinn
Beschreibung
Zusammenfassung:We study the iteration of block spin transformations in the O(3) symmetric nonlinear σ model on a two-dimensional square lattice with the help of the Monte Carlo method. In contrast with the classical Monte Carlo renormalization group approach, we do attempt to explicitly compute the block spin effective actions. Using two different methods for the determination of effective couplings, we study the renormalization group flow for various parametrization and truncation schemes. The largest ansatz for the effective action contains thirteen coupling constants. Actions on the renormalized trajectory should describe theories with no lattice artifacts, even at a small correlation length. However, tests with the step scaling function of Lüscher, Weisz, and Wolff reveal that our truncated effective actions show sizable scaling violations indicating that the Ansätze are still too small.
Beschreibung:Gesehen am 12.07.2022
Beschreibung:Online Resource
ISSN:1550-2368
DOI:10.1103/PhysRevD.54.1736