Scalable quantum state tomography with artificial neural networks

Modern day quantum simulators can prepare a wide variety of quantum states but extracting observables from the resulting "quantum data" often poses a challenge. We tackle this problem by developing a quantum state tomography scheme which relies on approximating the probability distribution...

Full description

Saved in:
Bibliographic Details
Main Authors: Schmale, Tobias (Author) , Reh, Moritz (Author) , Gärttner, Martin (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: September 29, 2021
In: Arxiv
Year: 2021, Pages: 1-9
DOI:10.48550/arXiv.2109.13776
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2109.13776
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2109.13776
Get full text
Author Notes:Tobias Schmale, Moritz Reh, and Martin Gärttner
Description
Summary:Modern day quantum simulators can prepare a wide variety of quantum states but extracting observables from the resulting "quantum data" often poses a challenge. We tackle this problem by developing a quantum state tomography scheme which relies on approximating the probability distribution over the outcomes of an informationally complete measurement in a variational manifold represented by a convolutional neural network. We show an excellent representability of prototypical ground- and steady states with this ansatz using a number of variational parameters that scales polynomially in system size. This compressed representation allows us to reconstruct states with high classical fidelities outperforming standard methods such as maximum likelihood estimation. Furthermore, it achieves a reduction of the root mean square errors of observables by up to an order of magnitude compared to their direct estimation from experimental data.
Item Description:Gesehen am 13.07.2022
Physical Description:Online Resource
DOI:10.48550/arXiv.2109.13776