Scalable quantum state tomography with artificial neural networks

Modern day quantum simulators can prepare a wide variety of quantum states but extracting observables from the resulting "quantum data" often poses a challenge. We tackle this problem by developing a quantum state tomography scheme which relies on approximating the probability distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schmale, Tobias (VerfasserIn) , Reh, Moritz (VerfasserIn) , Gärttner, Martin (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: September 29, 2021
In: Arxiv
Year: 2021, Pages: 1-9
DOI:10.48550/arXiv.2109.13776
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2109.13776
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2109.13776
Volltext
Verfasserangaben:Tobias Schmale, Moritz Reh, and Martin Gärttner

MARC

LEADER 00000caa a2200000 c 4500
001 1810072794
003 DE-627
005 20220820222346.0
007 cr uuu---uuuuu
008 220713s2021 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2109.13776  |2 doi 
035 |a (DE-627)1810072794 
035 |a (DE-599)KXP1810072794 
035 |a (OCoLC)1341463959 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Schmale, Tobias  |e VerfasserIn  |0 (DE-588)1262580714  |0 (DE-627)1810550181  |4 aut 
245 1 0 |a Scalable quantum state tomography with artificial neural networks  |c Tobias Schmale, Moritz Reh, and Martin Gärttner 
264 1 |c September 29, 2021 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.07.2022 
520 |a Modern day quantum simulators can prepare a wide variety of quantum states but extracting observables from the resulting "quantum data" often poses a challenge. We tackle this problem by developing a quantum state tomography scheme which relies on approximating the probability distribution over the outcomes of an informationally complete measurement in a variational manifold represented by a convolutional neural network. We show an excellent representability of prototypical ground- and steady states with this ansatz using a number of variational parameters that scales polynomially in system size. This compressed representation allows us to reconstruct states with high classical fidelities outperforming standard methods such as maximum likelihood estimation. Furthermore, it achieves a reduction of the root mean square errors of observables by up to an order of magnitude compared to their direct estimation from experimental data. 
650 4 |a Condensed Matter - Quantum Gases 
650 4 |a Physics - Computational Physics 
650 4 |a Quantum Physics 
700 1 |a Reh, Moritz  |d 1995-  |e VerfasserIn  |0 (DE-588)1247844358  |0 (DE-627)1782431616  |4 aut 
700 1 |a Gärttner, Martin  |d 1985-  |e VerfasserIn  |0 (DE-588)1047469529  |0 (DE-627)778426076  |0 (DE-576)401083527  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2021), Artikel-ID 2109.13776, Seite 1-9  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Scalable quantum state tomography with artificial neural networks 
773 1 8 |g year:2021  |g elocationid:2109.13776  |g pages:1-9  |g extent:9  |a Scalable quantum state tomography with artificial neural networks 
856 4 0 |u https://doi.org/10.48550/arXiv.2109.13776  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2109.13776  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220713 
993 |a Article 
994 |a 2021 
998 |g 1047469529  |a Gärttner, Martin  |m 1047469529:Gärttner, Martin  |d 130000  |d 130200  |d 130000  |d 700000  |d 728500  |e 130000PG1047469529  |e 130200PG1047469529  |e 130000PG1047469529  |e 700000PG1047469529  |e 728500PG1047469529  |k 0/130000/  |k 1/130000/130200/  |k 0/130000/  |k 0/700000/  |k 1/700000/728500/  |p 3  |y j 
998 |g 1247844358  |a Reh, Moritz  |m 1247844358:Reh, Moritz  |d 130000  |d 130700  |d 700000  |d 728500  |e 130000PR1247844358  |e 130700PR1247844358  |e 700000PR1247844358  |e 728500PR1247844358  |k 0/130000/  |k 1/130000/130700/  |k 0/700000/  |k 1/700000/728500/  |p 2 
998 |g 1262580714  |a Schmale, Tobias  |m 1262580714:Schmale, Tobias  |d 130000  |e 130000PS1262580714  |k 0/130000/  |p 1  |x j 
999 |a KXP-PPN1810072794  |e 4164929359 
BIB |a Y 
JSO |a {"language":["eng"],"id":{"eki":["1810072794"],"doi":["10.48550/arXiv.2109.13776"]},"physDesc":[{"extent":"9 S."}],"recId":"1810072794","note":["Gesehen am 13.07.2022"],"title":[{"title_sort":"Scalable quantum state tomography with artificial neural networks","title":"Scalable quantum state tomography with artificial neural networks"}],"person":[{"role":"aut","given":"Tobias","roleDisplay":"VerfasserIn","display":"Schmale, Tobias","family":"Schmale"},{"role":"aut","given":"Moritz","display":"Reh, Moritz","family":"Reh","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Gärttner","display":"Gärttner, Martin","role":"aut","given":"Martin"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"September 29, 2021"}],"name":{"displayForm":["Tobias Schmale, Moritz Reh, and Martin Gärttner"]},"relHost":[{"part":{"year":"2021","text":"(2021), Artikel-ID 2109.13776, Seite 1-9","pages":"1-9","extent":"9"},"origin":[{"dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}],"pubHistory":["1991 -"],"disp":"Scalable quantum state tomography with artificial neural networksArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"note":["Gesehen am 28.05.2024"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"recId":"509006531","titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}]}]} 
SRT |a SCHMALETOBSCALABLEQU2920