End-to-end learned random walker for seeded image segmentation

We present an end-to-end learned algorithm for seeded segmentation. Our method is based on the Random Walker algorithm, where we predict the edge weights of the underlying graph using a convolutional neural network. This can be interpreted as learning context-dependent diffusivities for a linear dif...

Full description

Saved in:
Bibliographic Details
Main Authors: Cerrone, Lorenzo (Author) , Zeilmann, Alexander (Author) , Hamprecht, Fred (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 22 May 2019
In: Arxiv
Year: 2019, Pages: 1-11
DOI:10.48550/arXiv.1905.09045
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.1905.09045
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1905.09045
Get full text
Author Notes:Lorenzo Cerrone, Alexander Zeilmann, Fred A. Hamprecht
Description
Summary:We present an end-to-end learned algorithm for seeded segmentation. Our method is based on the Random Walker algorithm, where we predict the edge weights of the underlying graph using a convolutional neural network. This can be interpreted as learning context-dependent diffusivities for a linear diffusion process. Besides calculating the exact gradient for optimizing these diffusivities, we also propose simplifications that sparsely sample the gradient and still yield competitive results. The proposed method achieves the currently best results on a seeded version of the CREMI neuron segmentation challenge.
Item Description:Gesehen am 13.07.2022
Physical Description:Online Resource
DOI:10.48550/arXiv.1905.09045